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Abstract—Blocklists constitute a widely-used Internet security
mechanism to filter undesired network traffic based on IP/domain
reputation and behavior. Many blocklists are distributed in open
source form by threat intelligence providers who aggregate and
process input from their own sensors, but also from third-
party feeds or providers. Despite their wide adoption, many
open-source blocklist providers lack clear documentation about
their structure, curation process, contents, dynamics, and inter-
relationships with other providers. In this paper, we perform
a transparency and content analysis of 2,093 free and open
source blocklists with the aim of exploring those questions. To
that end, we perform a longitudinal 6-month crawling campaign
yielding more than 13.5M unique records. This allows us to shed
light on their nature, dynamics, inter-provider relationships, and
transparency. Specifically, we discuss how the lack of consensus
on distribution formats, blocklist labeling taxonomy, content
focus, and temporal dynamics creates a complex ecosystem that
complicates their combined crawling, aggregation and use. We
also provide observations regarding their generally low overlap as
well as acute differences in terms of liveness (i.e., how frequently
records get indexed and removed from the list) and the lack of
documentation about their data collection processes, nature and
intended purpose. We conclude the paper with recommendations
in terms of transparency, accountability, and standardization.

Index Terms—Security Management, Functional Areas; Net-
work Monitoring and measurements, Methods; Internet Connec-
tivity and Internet Access Services, Service Management.

I. INTRODUCTION

Network management practices often rely on data feeds
assigning labels to network entities for access control, e.g.,
feeds provided by threat intelligence platforms to identify and
block content regarded as malicious, untrustworthy, or simply
bad reputed. Such feeds are commonly regarded as blocklists
(or blacklists) and can contain a variety of actionable records,
including IP addresses, hostnames, URLs, TLS certificate
fingerprints, or file hashes. The effectiveness of blocklist-
ing to raise the bar against unwanted behavior, traffic, and
content has driven a steady growth in the threat intelligence
sharing ecosystem, with a variety of products and platforms
streamlining the aggregation, enforcement, and distribution of
actionable data. Even if the market penetration of blocklisting
is hard to know, Spamhaus–one of the oldest threat intelligence
providers–states that as of October 6, 2020 their blocklists
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are protecting an estimated 3,126,410,000 user mailboxes [1].
Similarly, MISP (Malware Intelligence Sharing Platform [2]),
a popular open source threat intelligence platform, reports that
it is used by more than 6,000 organizations worldwide. Beyond
blocklists, other feeds can be used by applications to block or
restrict access. One example are feeds of Tor exit node IPs,
e.g., used by Wikipedia to block users of the Tor anonymity
network from editing Wikipedia due to abuses in the past [3].

Blocklists can be proprietary (i.e., commercial) or open
source. The former are often available through rate-limited,
license-based, or pay-per-use mechanisms and are maintained
by for-profit companies specialized in threat intelligence. On
the other hand, we define open source blocklists as lists that
are openly and freely available for anyone to collect and use.
The ecosystem of open source blocklists is heterogeneous,
with different types of providers, from for-profit companies
that make publicly available—often partially—some of their
data feeds, to individual users or organizations that publish
their own collected and curated data. One key aspect of this
diversity is that different providers follow different methods
to collect, curate, maintain, and label their blocklists. Yet
openness does not necessarily imply transparency. Often times,
their internal data collection and sanitization processes are not
sufficiently documented, thus impeding their optimal usage
and, ultimately, their widespread adoption. We elaborate on
these issues below:
• Data sources: While some providers operate their own

sensors and honeypots to detect malicious activities, others
might aggregate records from other providers’ blocklists.
Yet, many blocklist providers do not document their data
sources. This impedes blocklist consumers from assessing
the limitations, representativity, applicability, and scope of
a given feed. Understanding the nature of the records con-
tained in a blocklist and the potential overlap between dif-
ferent providers is instrumental for an optimal exploitation,
particularly for end-users combining multiple feeds into a
single, consolidated database. When open source blocklist
providers fail to document their data sources, users might
end up aggregating lists compiled for different purposes or
that are indeed indexing the same entries, possibly under
different tags or labels.

• Data curation: Blocklist providers should make available a
clear description of the methodology followed to guarantee
that the data they provide is sound and does not include false
positives or outdated records. For instance, a given IP that
was part of a botnet in the past can be benign later down the
road. Similarly, when new malicious indicators appear, they
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should be included in well-maintained blocklists as soon as
possible. For those blocklists feeding from each other, record
propagation across lists might negatively contribute to the
dissemination of false positives, making it harder to remove
records once they are detected as such.1 As a result, the
update frequency of lists, including the addition or removal
of records, is an important characteristic to measure their
liveness and data curation processes.

• Record and blocklist labeling: Open source blocklists
are widely heterogeneous in terms of the type of records
contained in their feeds and the potentially harmful behavior
that they try to protect against (i.e., tracking, phishing, or
malware). Yet, many providers publish their feeds without
sufficiently describing their actual purpose or application.
While some platforms rely on public taxonomies to label
records in their list, many blocklists simply provide a custom
label, if any. Even for those that try to label the nature
of their data and their data sources, there are substan-
tial methodological differences (and subjective perceptions)
across providers when defining their records. For instance,
labeling differences often come down to a granularity issue,
with some lists using generic labels such as “malicious,”
while others offer a specialized classification system for
malicious types. These differences in terms of labeling
methodology and strategy are problematic because (i) they
result in instances where a given entry appears in blocklists
that have different purposes according to their providers;
and (ii) complicate their comparison and aggregation into
more comprehensive threat intelligence feeds.

The aforementioned reasons call for an empirical analysis
and measurement of the soundness, freshness, dissemination,
and nature of the records present in open source blocklists,
as well as the transparency and documentation practices of
their respective providers. This effort is essential not only to
inform network operators relying on these security resources,
but also to design more effective defenses that account for the
complementary strengths and limitations of individual block-
lists when used in isolation. While previous research efforts
have analyzed the dynamics and intra-dependencies (i.e., their
overlap) of specific types of blocklists (e.g., spam, phishing,
or proprietary blocklists) [5], [6], [7], the dynamics, accuracy,
and limitations of the open source blocklist ecosystem remain
unknown. In this paper, we tackle similar problems but we
look at the grand scheme of things, studying a dataset formed
by a large number of open source blocklists that are not limited
to a single type of malicious activities. We want to understand
what are the problems that arise when a company or user
aggregates open source blocklists from different sources and
threat type. This strategy also allows us to study the dynamics
and inter-dependencies between lists from different categories.
We investigate how the lack of transparency from blocklist
providers regarding their data collection, data sanitization and

1Anecdotally, a thread in AlienVault’s forum [4] describes how false
positives were found in one of their blocklist. When reported, the provider
argued that this list was used only for historical reputation and risk analysis.
Yet the entries propagated to other blocklists feeding from AlienVault that
were unaware of this purpose, contributing to the spread of erroneous records
across blocklists and thus to incorrect blocking.

categorization processes can lead to problems to users that try
to improve their protection by aggregating lists from different
providers. This is an under-researched area that deserves a
closer examination given the widespread use of open source
blocklists in operational environments.

To address the challenges discussed above, in this paper we
run an extensive campaign of identification and crawling of
2,093 open source blocklists from 69 providers (Section III).
Our dataset includes feeds from prominent providers (e.g.,
MISP or Spamhaus) and blocklists used for different cases and
applications: from identifying users from anonymity networks
to blocking malicious content. Our large-scale and diverse
dataset allows us to gain a unique view to investigate fun-
damental questions related to the nature, dynamics, pitfalls,
transparency and purpose of the open-source blocklist ecosys-
tem. Our paper contributions are as follows:
• We inspect the ecosystem of open source blocklists pro-

viders, analyzing their characteristics and how transparent
they are (Section IV). We also study the differences across
blocklists in terms of the type of records that they include
(Section V).

• We analyze the dynamics of the blocklists in our dataset by
studying their changes (i.e., record additions and removals)
and update rates over time (Section VI). We observe that
30% of the lists never change and that 7% change at
least daily. In the case of those blocklists that are updated,
12% only add entries, 32% only sporadically remove them
(possibly due to sanitization efforts), and 56% both add and
remove records.

• We study the relationships between blocklists in terms of
content overlap (Section VII) and how records propagate
among multiple blocklists over time (Section VIII). These
complementary views allow us to observe a high overlap
between some providers. We find groups of providers con-
sistently adding and removing the same entries, which can
be an artifact of providers feeding from the same sources
or from one another.

• We show that many providers do not label their blocklists
(40%), nor document their purpose. Moreover, in those
cases where labels are provided, blocklisted entries are not
labeled consistently across providers (14.8%). We also show
that external data-sources can increase the confidence on
provider labels, but they cannot fully solve the labeling
problem. This result highlights the many challenges to be
faced when trying to aggregate blocklists that supposedly
protect against the same type of malicious or undesired
behavior (Section IX).
Our analysis shows that the lack of ground truth about

the maliciousness of a given resource and provider’s opac-
ity make it impossible to study issues such as the reason
why a given entry is blocklisted, whether the inclusion of
a given entry was correct, or which providers are “better”
and should thus be trusted by users. Overall, our findings
and observations provide constructive discussion on topics
related to transparency, existing challenges, and best practices
in operational settings for blocklists providers, end-users, and
researchers. Finally, in order to foster research and allow for
reproducibility, we make our datasets and parsers available to
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the research community [8].

II. RELATED WORK

In the last years, several studies have measured and analyzed
the effectiveness of blocklists to identify and prevent unwanted
behaviors such as user tracking [9], [10], [11] or spam
detection [12], [13], [14], [15], as well as to study the overlap
between blocklist providers [16], [17], [18], [19], [20], [21],
[22].

Sheng et al. showed that phishing blocklists are slow at
detecting campaigns, and that they have large variations in
terms of coverage, effectiveness, and speed of reporting [16].
Kuhrer et al. created a system that parses 49 malware block-
lists, analyzing the presence of domains across them and their
overlap [17]. They conclude that, while one can obtain a
high number of domains from parsing these blocklists, several
months of analysis are necessary to get a whole understanding
of their dynamics. Phuong et al. analyzed the differences be-
tween 14 public and private lists, showing that some blocklists
are almost identical and that different versions of the Google
Safe Browser were developed independently [19].

Previous works have also defined and reported metrics to
analyze the coverage, correctness or uniqueness of blocklists
and threat intelligence services. Pitsillidis et al. studied the
aptness of spam feeds for different purposes [6]. They showed
that there are major differences in the way that data is collected
and that users should therefore pick the feed that better fits
their purpose. Metcalf et al. compared 86 different blocklists
and reported on their scale and overlap [7]. They showed
that IPs and domains are unique to a blocklists over 80% of
the time and that there is little overlap across blocklists. Ra-
manathan et al.developed BLAG, which attempts to improve
the accuracy of blocklists by aggregating different lists into a
master blocklist [21].

Li et al. analyzed 55 threat intelligence sources—including
proprietary ones—highlighting their limitations and shortcom-
ings [5]. They designed metrics to measure characteristics
of these lists and showed that there is substantial variation
in terms on content across lists; that larger feeds do no
necessarily contain better data; and that most IPs appear only
on a single list. Finally, Ramanathan et al. showed that over
50% of the 151 publicly available IPv4 blocklists in their study
contained reused IP address, and that this could affect as many
as 78 legitimate IPs for up to 44 days [23].

Table I highlights the differences and similarities between
our study and previous work. Our work provides a novel and
complementary approach to the study of blocklists, focusing
primarily on the open blocklist ecosystem, their nature, and
their transparency. Contrary to some of the related work [16],
[17], [6], we study the synergies between blocklists with
different purposes. In addition, our large dataset of open source
blocklists gives us an unique and more holistic view of the
ecosystem of blocklists and their relationships [19], [5]. To the
best of our knowledge, our work is also the first one to show
how the lack of documentation and operational differences
among providers can negatively impact end-users.
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[16] 8 Phishing 48 hours 7 7 3 7 7 7
[17] 49 Malware – 7 7 3 7 7 7
[19] 14 Public/Private – 7 7 3 7 7 7
[6] 10 Spam 3 months 3 7 3 7 7 7
[7] 86 – 1 + 1.5 years 7 7 3 3 7 7
[5] 55 Public/Private 1.5 years 3 7 3 7 7 7
[21] 157 Public 11 months 3 7 7 7 7 7

Ours 2,093 Public 6 months 3 7 3 3 3 3

Table I: Comparison to related work on blocklists

III. DATA COLLECTION

In February 2019, we started a snowball sampling process
to discover and harvest as many blocklists and providers2 as
possible. First, we leveraged available online sources such as
forums, blogs, and white papers to identify the most influential
threat intelligence vendors in the blocklisting market [24],
[25], [26]. We complemented this list with targeted web
searches. Finally, for the purpose of this study, we filtered
only those providers offering open feeds and datasets.

Our final dataset contains 2,093 feeds from 69 providers,
including Dshield, Talos Intelligence, MalwareBytes, abuse.ch,
Spamhaus, and the Malware Information Sharing Platform
(MISP) [27]. Given our focus on open-source intelligence,
we exclude commercial blocklists with strict ToS, record-
oriented APIs, and rate-limited APIs (e.g., Facebook’s Threat
Intelligence). We note that some of the blocklists in our
collection are proprietary but were made publicly available
without restriction. Also, some of the blocklists that were
originally identified and added in our pipeline became obsolete
during the period of study, e.g. due to owner no longer
maintaining it or since they are only active for a particular
set of events like a ransomware campaign. We analyze the
liveness of the blocklists in Section VI.

We intentionally looked for blocklists of different ori-
gins and purposes: from blocklists covering malware cam-
paigns (e.g., Maltrail [28]), to feeds listing IPs associated
to anonymity networks (e.g., Blutmagie for Tor). While the
latter might not be advertised as blocklists, they can be used
for secondary purposes such as blocking users from these
networks (e.g., as used by Wikipedia to prevent Tor users from
editing [3]). Therefore, we not only include network entities
that should be blocked because their content is deemed as
dangerous, untrustworthy, or inappropriate, but also listings
of elements that can be actioned in more complex filtering
policies and applications (e.g., whitelisting domains or repu-
tation scores). For simplicity, we will use the term “blocklist”
throughout the paper to collectively refer to all the feeds in our
dataset. It can be argued that the inclusion of these lists could
be problematic as most people would not necessarily use them
for blocking purposes. However, the high overlap between
them and actual blocklists justifies this decision (further details
in § VII).

2We define a provider as any entity (organization or individual) that
compiles records into a blocklist and makes it publicly available, regardless
of the type of blocklists or entity providing it.
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The diversity across different lists and providers introduces
side effects as the data format used by each blocklist lacks
homogeneity. These formats range from simple text files listing
the items (one line per entry) to structured formats such
as JSON files, and even custom ones (e.g., entries grouped
together and separated by a custom delimiter). The lack
of a standardized format required us to develop customized
processors to parse each selected blocklist.

A. Blocklist crawling approach

As a result of our blocklist discovery process, our dataset
grew over time. The observations of this paper covers a 6-
month period (August 7, 2019 to February 13, 2020) for which
we have a stable set of blocklists. We crawl and timestamp
each blocklist every 8 hours and then parse them, discarding
comments and malformed entries.

During this 6-month period, we collected more than 13.5M
unique records from 2,093 blocklists. We parse and classify
each blocklist record by its type (e.g., domains, IP blocks,
URIs). Then, for each new hostname and URL, we augment
our dataset with active measurements executed sequentially
as new entries get indexed from two European countries.
Specifically, we obtain A, AAAA, MX, NS, and CNAME records.
Finally, we leverage Fortiguard’s service to label domains and
IPs according to a commercial service [29]. This process will
allow us to compare labels across services in Section IX using
a reliable reference.
Ethical considerations. This study is not considered as
human-subject research. The analysis is based on publicly
available data. We notified both our national CERT and
our academic network provider prior to any data collection,
particularly for the active measurements.

B. Challenges and limitations

We next report the limitations that we have identified during
our data collection and curation processes.
Dataset. Some blocklists providers such as Maltrail and MISP
create blocklists tailored to specific attack campaigns. The
unique perspective on what is a “blocklist” for these providers
has also implications in the analysis, since their dynamism
should be measured not only in terms of records per blocklist,
but also in terms of newly created blocklists. We indexed the
blocklists offered by these providers only once. Therefore,
the interpretation of our results for these providers should be
considered with this limitation in mind.
Crawling periodicity. Our 8-hour tick crawling strategy im-
poses some restrictions on our measurement and the inter-
pretation of some of the results, particularly those related to
the propagation of records across blocklists. Nevertheless, this
affects a relatively low number of blocklists (as we report in
Section VI, only 7% of the blocklists change at least daily),
but it prevents us from analyzing blocklist behavior beyond
the 8-hour granularity.
Record and format heterogeneity. We found a wild ecosys-
tem of public blocklists that lack a commonly accepted format
to distribute content. Consequently, we are forced to manually
analyze each one of the 2,093 blocklist and develop ad-hoc

crawlers and parsers to access and store their records. Even if
we did our best to guarantee correctness by regularly checking
for new formats, it is still possible that unnoticed changes on
a blocklist (or on specific record formats) result in our parser
missing some of the entries. To account for this, we keep a
raw copy of the blocklist on every crawl, to re-parse a given
instance if needed.
Problems in the crawling infrastructure. There were three
days in which our crawling infrastructure went down. Specif-
ically, we lack data for September 14th, October 17th, and
November 7th, 2019. In some rare cases, some blocklists were
unreachable during a given crawl.

IV. BLOCKLIST PROVIDERS

As a result from our decision to collect and study open
source blocklists from different providers and different pur-
poses, we are able to collect a diverse dataset in terms of
type of blocklists and providers. Table II provides high-level
statistics for the most relevant providers. It is worth noting that
the volume and type of records vary greatly across providers.
Six different blocklists offered by Bambenek account for more
than 5M records, and over 99% of them are not indexed by any
other blocklist provider. The analysis of the records offered by
each provider also talks about their diversity in terms of data
collection. While MISP and Maltrail account for the majority
of the individual blocklists, they account for less than 2% of
the total records. This reflects on their tendency to release
a large number of highly-specialized blocklists. In terms of
the type of records distributed, we observe a clear distinction
between comprehensive providers (e.g., Abuse.ch and MISP)
that offer blocklists covering many types of items and others
that only index specific types of record and application.

A. Providers transparency

Table II shows that open source blocklists providers present
differences in terms of the type of data that they include, how
they collect this data, and how they present it to the users.
These providers need to make this information available in
their documentation so that users can make a correct use of
open source blocklists. To verify how prevalent this practice
is, we visit the homepage of all 69 providers and analyze
whether they inform users about their collection methods, the
taxonomy used to classify their records, or their sanitization
strategy to prevent the inclusion of false positives.

In the course of this study, some of the providers’ webpages
have become unavailable (9%). We find that, overall, it is
common (83%) to find contact details which allow users to
reach the provider for different purposes (e.g., to report a false
positive). However, the lack of transparency becomes more
evident when analyzing more specific details:
• Data sources and data collection: 31% of the providers do

not provide any relevant information about their data sources
and data collection processes. For those that disclose this
information, we find that they often do a combination of
the following strategies: (i) aggregation of other blocklists
(21%); (ii) use of their own detection techniques (33%);
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Table II: Summary statistics of the 10 largest blocklist providers (by the number of records) in our dataset.

Provider Blocklists
Records

Aggregated
Daily

Median
Unique IP (Prefixes/Blocks) Hostnames URIs Tor Other

Bambenek 6 5,325,326 64,820 99.73% 0.12% 99.51% - - 0.37%
MalwareWorld 4 2,310,696 147,674 10.76% 79.76% 19.38% 0.01% 0.01% 0.85%
Lashback 1 1,859,313 268,207 73.07% 100.00% - - - -
NiX Spam 1 1,085,245 6,946 52.53% 100.00% - - - -
Firehol Project 16 991,322 3,622 55.06% 100.00% - - - -
MalwareBytes 15 909,425 129,977 94.01% - 99.99% - 0.01% 0.01%
Blacklist.de 1 495,649 28,797 0.24% 100.00% - - - -
AlienVault 1 422,605 74,793 0.02% 100.00% - - - -
Cins 1 420,420 15,000 1.32% 100.00% - - - -
Malshare 1 405,445 2,369 100.00% - - - - 100.00%

and (iii) user submissions (11%), typically by means of the
technology supplied by the provider.

• Data curation: Only 20% of the providers declare that they
have data sanitization process to detect and eliminate false
positives, and include contact forms or email addresses for
reporting errors.

• Labeling strategy: For 33% of the providers we cannot find
any documentation related to how they classify the entries
in their dataset (i.e., a taxonomy). For those that provide
such information, we find two clear approaches: (i) lists for
which every entry has its own description (13%); or (ii) lists
where every entry belongs to the same type of threat (43%).
To prevent blocklist misuse, developers should be clear

about the expected usage of a given list. For instance, some
lists are meant as a classification service rather than as block-
lists (e.g., listing IPs that belong to a given country or mobile
operator [30]). We have identified a group of feeds commonly
known as aggressive lists that are a superset of a vendor’s
standard feed, including entries detected by their algorithms
or reported by users, but not proven to be malicious [31], [32].
Lack of documentation can lead to customers relying on these
lists and unintentionally over-blocking.
Takeaway. The open source blocklists ecosystem is highly
complex, with providers that follow very different data collec-
tion and sanitization strategies and often fail to document these
processes. Overall, blocklist providers should take action to
enhance the transparency of the blocklist compilation process,
with clear and unambiguous guidelines that help operators and
researchers decide which blocklists better fit their needs, and
also limit undesirable record propagation.

In the rest of this paper we will strive to shed light into this
ecosystem by analyzing the differences among providers in
terms of: (i) the type of record that they contain (Section V);
(ii) what are their update cycles and whether providers are
proactive in adding new threats to their lists while removing
false positives (Section VI); (iii) how the overlap (Section VII)
and propagation of records across providers (Section VIII)
show which providers are potentially feeding from each other
or the same data sources; and (iv) how the lack of a common
labeling framework can cause problems for end-users (Sec-
tion IX), preventing sound usage and aggregation of lists from
different providers.

Table III: Distribution of the number of records per provider
and blocklists per record type.

Unique records % providers % blocklists

Hostnames 6,861,861 33% 65%
IP (Prefixes/Blocks) 5,619,843 81% 48%
URIs 573,814 23% 64%
Onion 496 16% 4%
Other 518,081 35% 55%

V. RECORD-TYPE ANALYSIS

During the development of our blocklist parsers (Sec-
tion III), we find five primary types of records which are
not necessarily documented by each provider: hostnames, IP
addresses (including individual IPv4 and IPv6 addresses as
well as blocks), URIs and Tor hidden services. We group
under the “Other” all the records that do not match any of the
previous categories. Table II shows the percentage of records
from each of these categories present in the blocklists from
the most relevant providers. We refer the reader to Table III
for detailed statistics for each category.
Hostnames. The majority of the records indexed by our
blocklists are hostnames (51% of the total), over 75% of them
uniquely indexed by Bambenek, the largest provider in our
dataset. According to Fortiguard’s domain classification, the
majority of these domains are involved in malicious activities.
Over 30% of the domains are classified as “Spam URLs”
followed by “Malicious Websites” (5%) and “Phishing” (4%).
IP addresses and blocks. This category accounts for 41% of
the total records and encompasses individual IPv4 and IPv6
addresses, IP blocks, and services represented by pairs of IP
addresses and TCP or UDP ports (i.e., <IP>:<PORT>). 3 We
find 6,203 IP addresses with 890 different port numbers.4 We
use the DNS resolution of the domains found in our corpus
of blocklists and find that 64 domains (median) resolve daily
to IP addresses that are also blocklisted by other providers.

3Notably, the aggregate of all IPv4 records (single IPs and prefixes) account
for 30% of the whole IPv4 address space.

4While the most frequent port numbers are 80, 443 and 8080, it is also
worth noting the presence of port numbers 1604, 1177, and 12345. These TCP
ports are associated with known malicious Remote Access Control services
like DarkComent [33], njRAT [34], and NetBus [35].
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The size of the IP blocks indexed by blocklists is diverse.
The most common size of IPv4 prefixes is /32 (which is
in fact a single IP address) followed by /24. The largest
IPv4 block that we identified is 103.160.0.0/11, which
was found in the FireHOL list [36] and remained present in
all crawlings of this list that we performed. Some blocklists
also contain arbitrary IP ranges (e.g., 37.49.226.211 -
37.49.226.213) that do not follow the standard CIDR
notation, hence adding more complexity to the parsing pro-
cess. In terms of autonomous systems (AS) owning these IP
addresses or blocks, we find that the median number of ASes
that have at least one blocklisted IP is 26,683 per day for IPv4,
and 246 for IPv6. We found 130 ASes owning IP-level records
constantly blocklisted during our 6-month analysis, including
eyeball ISPs like Comcast (US) or AT&T (US), and cloud and
hosting providers like SeeWeb (IT) or OVH (FR).
URIs. We identify 573,814 entries with an URI in 64%
of the blocklists. We observe that 20% of the URIs report
<IP>:<PORT> pairs rather than a hostname (78% of them
are already indexed as IP addresses or hostnames).
Onion. We identified 496 different Onion services, which
represent the smallest group based on the type of entry. In this
group, we can observe 6 different suffixes, .onion (48%),
.onion.cab (8%), .onion.city (2%), .onion.direct
(2%), .onion.to (33%), and .onion.top (7%). These last
five suffixes are typically used to get access to Onion sites
without using Tor Browser [37]
Other. Finally, we classify as “Other” category those entries
that do not match any of the previous categories. This category
accounts for the 35% of the total entries, 90% of which are
hashed entries of any type.

Takeaway. Our record-level analysis confirms that open source
blocklists are very different in terms of the type of content that
they provide. Therefore, it is important that providers clearly
document what type of records they include. This will prevent
users from undesired side effects such as over-blocking (e.g.,
the combined size of all lists in our dataset leads to blocking
30% of the whole IPv4 address space).

VI. GROWTH AND LIVENESS

It is important to understand whether providers update their
blocklists regularly, and what are the update mechanisms.
Addition of records suggests an interest towards completeness,
while removals demonstrate willingness to avoid bloating and
to remove false positives. During our observation window, we
find that over 30% of blocklists remain unchanged but we
see large differences in blocklists’ dynamics based on their
provider. Over 80% of the blocklist from providers like Mal-
trail and Abuse.ch were not updated during our observation
window. The most extreme case are 7 providers publishing 8
blocklists who never updated their products during the obser-
vation window, including blocklists from national research and
education networks like RedIris. The percentage of blocklists
that remain unchanged also varies with the stability of the type
of record: 34% of the blocklists indexing onion services never
changed.
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Figure 1: Unique, daily and cumulative entries per day

Figure 1 shows that the number of total records indexed per
day remains quite stable for our 6-month study.5 Yet, different
blocklist update cycles cause slight variations in the number
of total records indexed across all blocklists every day. The
daily variance is larger for certain types of records: blocklists
indexing IPs, hostnames, and URIs show a higher dynamism.

A. Update cycles

The frequency of changes varies across individual blocklists
and providers. We focus on those blocklists that are indeed
updated during our crawl period, and find that 7% change
at least once per day (median value). This group contains
48 different providers, including Bambenek, Lashback, NiX
Spam, and Firehol (See Table II). We observe that 11 blocklists
from 6 providers, including PGL Yoyo, Turris, Cedia and
Maltrail update their content weekly. The number and the
nature of these changes varies across blocklists and providers:
1) 12% of the blocklists that change only add new entries,

70% of which are related to Maltrail. Nevertheless, these
blocklists do not grow significantly as a result: only 14k
new entries appeared in these blocklists during the entire
measurement period when aggregated.

2) 32% of the blocklists only remove records (98% of them
are published by MISP, which suggests efforts to minimize
false positives). Overall, the total number of deleted records
(48k) is not very significant.

3) We observe that 56% of the blocklists both remove and
add entries in every update.

To better quantify the balance between the number of
removals and additions, for every crawl, we compute the ratio
of added and removed records as compared to the previous
one. We focus the analysis on providers to avoid possible
fluctuations between blocklists from the same provider (e.g.,
due to entries moving from one list to another). We can see that
the distribution of added and removed entries is very similar
for most providers. However, there are some extreme cases.
For instance: (1) Malshare hash blocklists regenerates almost
completely its contents at every update, suggesting that they
should be treated as newly observed entries; and (2) Malcode
renews its contents with a ratio of 66% additions and 45%
removals. We also observe differences in the update cycles of

5The three drops are due to outages in our crawling infrastructure (§ III-B).
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blocklists that only index a single type of record. The trend for
those that only index hostnames is to add more entries than
they remove, while in the case of blocklists that only index
IP addresses the behavior is the opposite. This is likely due
to the fact that IP addresses are more volatile, and addresses
that get re-assigned can lose their negative behaviors [23].

B. Record-level liveness

As discussed before, records might get removed at different
rates due to different approaches to the sanitization process. To
better understand this, we analyze for how long a given record
survives in a blocklist. We study two months of data, from
December 1st, 2019 to January 31st, 2020, to eliminate noise
potentially introduced due to service outages in our crawling
infrastructure (§ III-B). Our observations should remain valid
for larger time windows. We observe that 30% of the entries,
collected in the first week, never get removed. In order to
reduce potential biases due to a record being removed late (we
analyze latency in Section VIII), for each blocklist we track
the entries indexed in the first week, between December 1st
to December 7th, and we check if they remain indexed in the
2 months period in the same blocklist. We observe that 30%
of the entries observed in the first week are never removed.
Figure 2 shows the liveness of entries (i.e., percentage of
crawls in which an entry is present at the same blocklist) by
record type. As previously, we compiled the entries observed
per blocklists in the first week of December 2019, and then
we computed the number of crawls each entry remain indexed
on the blocklist from the 8th of December to the 31st of
January. We can see that the number of entries that are never
removed varies depending the type of entry, from the 43%,
and 42% of the hostnames and Onion services, to the 11% of
the URIs, However, we observe that 43% of the IP remains
less than 50% of the crawls in the two months. In the case of
the hostnames, the percentage of entries that remain less than
50% of the crawls drops to 14% of the entries. Further, 40%
of the removed IPs got re-indexed during this period of time
by the same blocklist. This suggests that, contrarily to other
type of records, IP indexation is more volatile: entries tend to
be indexed and removed more frequently. In Section VIII we
further analyze the dynamism of records across blocklists and
the update latency for the different providers.
Takeaway. We have shown that providers have different
updating cycles, from multiple times per day (e.g., Bambenek)
to weekly (e.g., Turris) to not being updated at all (e.g.,
RedIris). Also, not all of the blocklists keep historical data.
For instance, Malshare creates a new file every time that new
entries get indexed. Providers must clarify their update cycles
(and lifetime) so that users can crawl these lists accordingly.

VII. OVERLAP

Threat Intelligence benefits from information sharing across
providers [38]. In fact, as a result of the open nature of our
target blocklists, it is reasonable to expect a certain amount of
overlap between them. In this section, we quantify the overlap
between pairs of blocklists providers at the record-level, both
in an aggregated fashion (i.e., across our 6-month observation
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Figure 2: Record liveness from December 1st 2019 to January
31st 2020 by record type.

window) and daily. To do so, we use two complementary
metrics: the overlap coefficient [39] and Jaccard’s similarity
index [40]. The overlap coefficient has the advantage of being
equal to 1 if one of the compared sets is a subset of the other,
so it will reveal the presence of potential list aggregators.
Jaccard’s similarity, instead, will allow us to measure how
large these subsets are.

A. Analysis of providers
The analysis of overlap reveals strong similarities between

some pairs of providers. While we find that 60% of the
possible pairs of providers do not overlap at all, there are
cases in which there is a significant overlap between blocklists
from different providers. Appendix A shows heatmaps of
the overlap coefficient and Jaccard’s index per provider. In
particular, the 4 lists issued by MalwareWorld have a mean
overlap coefficient of at least 50% with 49% of the lists
issued by 32 other providers. In this case, MalwareWorld
indicates on its website that it aggregates from multiple lists
covered in our study [41]. However, not all providers are so
transparent about their practices. Two providers that largely
overlap are CEDIA [42] and Lehigh university [43], with an
overlap coefficient of 1 and a Jaccard index of 99.7% (i.e.,
they are almost identical) but none of them acknowledges the
aggregation of data from other sources. According to Table II,
Bambenek—the largest provider in our list—only shares a
small fraction of records with other providers. Yet, the overlap
analysis reveals that they share records with the Internet Storm
Center.

In the majority of cases, even if the overlap coefficient
between two providers is high, the Jaccard index stays low:
below 20% in 99.7% of the cases. For instance, the mean
Jaccard index value between lists provided by MalwareWorld
and other providers is only 1.6%.

These observations suggest the existence of two types of
open blocklist providers: aggregators and aggregated. The
former are lists with high number of entries that have a high
overlap with the latter, but the Jaccard index is low. However,
the fact that a blocklist contains a high number of records does
not necessarily mean that it is an aggregator. For instance, the
mean overlap coefficient between lists provided by Lashback
(the third largest provider in our dataset) and other providers
is only 3% (the mean Jaccard index in this case is 0.1%).
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In terms of transparency, by manually checking the websites
of the 8 pairs of providers that have an overlap coefficient of
at least 20%, we observe that only two (MalwareWorld and
Firehol Project) providers acknowledge that they aggregate in-
formation from other blocklists and list their sources explicitly.

These results suggest different levels of macroscopic inter-
dependencies between providers: while some considerably
influence each other or feed from the same providers, others
are more independent. We further analyze these dependencies
temporally and across providers in Section VIII.

B. Temporal evolution of the overlap

The record overlap between pairs of providers can change
over time. For example, two providers might be sharing entries
at some point but might later dissociate due to a change of
license, the deployment of alternative data sources, or the sub-
scription to commercial feeds. To analyze whether temporal
changes occur, we compute a matrix of the overlap coefficient
between every pair of blocklists grouped by provider in our
dataset for every crawl. Then, we compute the difference
between the matrices from two consecutive crawls and obtain
its Frobenius norm [44]. We finally normalize the norm to get
a result between 0 and 1, the maximum value being the norm
of a matrix where all the values are ones.

The Jaccard index evolves very little over time: when
grouping the blocklists by providers, the norm of the difference
matrix between consecutive crawls never exceeds 4%. The
overlap coefficient, instead, shows more variation but stays
relatively low. When grouping the blocklists by provider, the
normalized norm of the difference matrices is lower than 5%
for 78% of the cases. This indicates that, regardless of the
evolution of the blocklists, the overlap between them varies
very little over time. In other words, when a pair of lists
overlap, they tend to evolve in the same way: new entries
added to one list tend to appear in others, and vice versa.
For these cases, the presence of the same records in multiple
blocklists cannot be used as an indication of consensus as they
might come from the same source. This can cause unexpected
issues down the road. For instance, if a domain gets blocklisted
by mistake, this error can be propagated to multiple lists
and the owner of the domain will have to contact dozens of
blocklists providers to get unlisted (in case that they provide
any type of contact).
Takeaway. We have shown that several providers present a
high overlap, and thus might be feeding from the same sources
or from each other. Nevertheless, these overlapping providers
do not clearly document that they take entries from other lists.
This lack of transparency prevents researchers and end-users
from making informed decisions about which blocklists better
fit their needs, and might result in them using blocklists with
high overlap.

VIII. RECORD PROPAGATION AND INFLUENCE

So far, we have observed that the total number of unique
records in our dataset remains constant, but there are frequent
additions and removals in specific blocklists (Section VI). We
have also seen that, regardless of the fact that most providers

Type #Providers #Relations #Propagations

IP 44 478 (96.37%) 1,050,135 (72.24%)
Hostname 10 13 (2.62%) 398,317 (27.40%)
URI 6 5 (1.01%) 5,186 (0.36%)

Table IV: Summary of the propagation of records found in the
2-month period of study
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Figure 3: Analysis of relations between providers in terms of
IP record propagation

do not inform users of their data sources (Section IV-A), we
observe significant overlaps between pair of providers, and
that these overlaps tend to persist in time (Section VII). In
this section, we aim to understand whether this overlap is an
artifact of blocklists’ providers feeding from the same sources
(or from each other). To do so, we take a closer look at the
propagation of records across blocklists and how providers
influence each other at a record level and longitudinally.
We also analyze the latency of the different providers when
updating their blocklists, following a similar approach to
previous work [5], while also measuring the latency of record
removals.

Our analysis is based on computing the trajectory of each
record across different blocklists. To do so, we first identify
the date when a record gets indexed for the first time at
each blocklist. Then, for each record r we create a timeline
sequence TS(r) = [St1 , St2 , . . . , StN ], where each Sti is the
set of blocklists that index r for the first time in time ti. We
consider relative timestamps, i.e., t0 = 0 and each subsequent
ti denotes the time units elapsed since t0. A propagation
occurs if a record is observed in two different blocklists at
times ti and tj with i < j. Since we collect data every 8 hours
(see Section III), a time unit corresponds to this interval.

The analysis is based on the observations in a time span of
two full stable months (December 2019 and January 2020).6

As shown in Section VII-B, the evolution of the overlap is
constant across the 6-month period of our dataset, and thus it
is reasonable to expect that the findings from two months can
be generalized. We found a total of 1,453,638 propagations
of records, all of them of type IP, URI or hostname (onions
and hashes do not propagate). Table IV shows the number
of providers that overlap (i.e., they index the same record at
some point), the number of relations (i.e., pairs of providers

6As discussed in Section VI-B, this avoids the noise caused by the crawling
infrastructure outages.
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with at least one propagation between each other), and the
total number of propagations for each type of record.

Hostnames dominate our dataset (see Table III) but the
overlap between pairs of providers tends to be low. Manual
inspection reveals that most of the propagations of domains
(98.6%) are due to MalwareWorld feeding from Internet Storm
Center. Similarly, 92.4% of the URLs that propagate are
phishing URLs shared between PhishTank and OpenPhish, two
of the providers with larger overlap.

Figure 3a shows the distribution of total relations and
providers of IP-level records. More than 35 providers out of 40
(79%) have more than 10 relationships with other providers.
Only 3 of them relate to just one another. This validates the
results from previous sections: the sharing of IP records is
common within the blocklists in our dataset, whereas URLs
and hostnames are not commonly shared, except for a few
providers. Therefore, in the remainder of this section we focus
the analysis on IP records.

A. Latency of record changes

Previous works have studied the latency of providers when
adding new records [5], [7]. However, these works lack a
latency analysis of providers when removing records. Indeed,
the blocklist update process should consider both data insertion
and removal. This is paramount to reduce bloating when a
record is no longer needed, and also to correct and prevent the
uncontrolled dissemination of false positives. Accordingly, we
investigate the latency of providers when both indexing and
de-indexing records from their blocklists.

1) Latency of record additions: We analyze the latency of
providers adding records that have been observed previously
in a different blocklist. To do so, we divide the entire timeline
of all records into regular relative slots, where the first slot
represents the first crawl where the record is observed. Then,
we count the number of times that a blocklist indexes a record
in each slot. Figure 4 shows the ratio of records that are
indexed at each time slot for each of the providers with more
than 1k propagations. To ease visualization, we group slots
using different intervals (see x-axis labels), which allows us
to analyze with low granularity the temporal dynamics in the
few hours after its first indexing.

One key observation is that once a new IP is indexed by
any of the providers, most of the others update their blocklists
fast. This suggests that the update process for these providers
is automated and new records are unlikely to go through
any additional checkings. However, some providers are slower
when adding entries. For example, in the case of Turris, 41%
of its records are indexed in the first slot, whereas 25% are in
slot T8 (i.e., a delay of 6 days since their first observation).
Turris claims to gather data from their own routers and releases
records weekly [45], due to the IPs being first analyzed and
classified according to observed behavior. This case evidences
the trade-off of such an strategy: while some data is unique
(and possibly contains fewer false positives than non-curated
items), it takes longer to reach users.

Record addition can be caused by re-offending entities,
i.e.,an IP being used for different purposes at different times.
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Figure 4: Addition latency of each blocklist provider for IP
records. Numbers in parentheses show the total of IP records
shared.

When a record which is already present in a list and is later
indexed in a different list, this can mean that the IP is being
re-used for a different purpose, or that the provider of the
second list took longer to detect the same misbehavior. While
difficult, we attempt to differentiate between these two cases
by looking for IPs that appear in a new list at least 1.5 months
after their first appearance in a different lists. This allow us to
find out only 0.5% IPs with the potential to be considered
as re-offending. By manual analysis, we find cases where
the IP is a Tor Exit node. IPs from Exit nodes are shared
by different users, which can lead to them being indexed at
different times (we will further investigate how this can lead
to the IP receiving multiple lables in § IX). In other cases, we
confirm that the IP is actually being used for different purposes
at different times (concretely, for brute-forcing at first, and for
spam 2 months afterwards). In these cases, these IPs might
correspond to bulletproof hosting servers, i.e.,hosts that are
not easy to track and take down (and those remain operative
even if they are blocked), and which are usually traded in
underground markets [46].

2) Latency of record removal: We assume that if a provider
A indexes a record first, and then a provider B indexes the
same record, the removal of the record in A should also
be followed by B. Yet, providers might implement different
sanitizing and filtering processes, and they might opt to keep
records in their blocklists according to their own policies (e.g.,
to have an historical perspective).

First, we count additions and removals per blocklist and then
we track the propagation of these events across blocklists and
at different times. For each record, we refer to the blocklist P
that indexes it first as the preceding blocklist, and blocklists
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Figure 5: Removal latency (mean for periods of 8 hours), total
removals and percentage per provider

S1, S2, . . . , SN indexing it at a later point as successors. We
analyze whether removals in P are followed by removals in
the successors and, if so, compute the latency.

Figure 5 shows the total number of records removed, the
percentage with respect to the number of records added, and
the average latency for each provider. For clarity, we only
include providers with more than 1k records in common with
preceding blocklists. Overall, all the providers remove records
consistently (all providers have a ratio of removals higher than
88%), which indicates that either they mirror their preceding
blocklists or they implement similar policies.

This high ratio of removals suggests that providers actually
aim at cleaning-up their lists. However, we observe substantial
differences in the policy across providers. For example, Alien-
Vault and Firehol are two providers that respectively removed
around 22k and 26k records that were previously removed in
their preceding blocklists. This means that these two providers
regularly update their blocklists. However, AlienVault takes,
on average, 31 crawls (around 10 days) to remove a record,
whereas Firehol takes just 3 (around 1 day). According to
AlienVault, the provided list of IPs should be used as a
reputation list rather than an actual blocklist [47]. However,
other entities feed from AlienVault for blocking purposes.
Thus, IPs that do not longer qualify as malicious and that
are not removed will propagate to these entities and might
cause unwanted disruptions [4]. Other providers update their
blocklists rather frequently and fast. For instance, the Nix
Spam Project removes records frequently (more than 5.3k)
and quickly (at every crawl on average, i.e., 8 hours). The
Nix Spam Project provides a quick form to request removals,
which suggests that it proactively aims at removing false
positives from their lists.

B. Correlation among blocklists

In Section VII we showed that the relationships and the
influence between blocklists are consistent over time. We
next investigate providers that are correlated over time, i.e.,
that evolve similarly. The distribution of propagations across
pairs of providers (Figure 3b) indicates that a minority of
pairs account for most of the propagations, with a substantial
amount of providers having very low overlap. Specifically, 23
out of 478 pairs (around 5%) account for more than 80% of the
propagations. This suggests that some providers accumulate
most of the propagations, i.e., they either feed from each other

Figure 6: Speed comparison of providers. Each Pij cell is the
percentage of i adding a record before j

or use the same sources. In order to compare each pair of
providers (i, j), we calculate three metrics. First, λij accounts
for the number of times that the two providers indexed the
same record simultaneously. Second, βij counts the number
of times that i was faster than j, meaning that i indexed the
same record before j did. Finally, αij counts the number of
times that i was slower than j.

We observe a cluster of various providers with more than
1k records indexed simultaneously, suggesting that these feed
from the same sources. This includes, among others, Mal-
wareWorld, AlienVault, Firehol, and ProofPoint. Figure 6
provides a comparison between providers with more than 1k
common records in terms of speed. Each cell Pij represents
the percentage of times that the provider i indexed a record
before provider j (i.e., βij divided by βij +αij). The analysis
reveals that two providers of Tor exit nodes (dan.me.uk and
TorProject) are always faster than their peers. Moreover, 83%
of their common IPs were indexed simultaneously, and in
most cases (93%) these records were unknown for the other
providers. This suggests that these two providers give the most
updated information regarding Tor exit nodes in our dataset.
In fact, Dan.me.uk, claims on its documentation that it fetches
information from TorProject every 30 minutes, explaining this
observation [48].

Also, MalwareWorld is in general slower than its feeds [49],
but it also has various records indexed simultaneously with
them. A potential reason is the fact that we use time units of
8 hours due to our crawling methodology which disallow us to
observe differences in record addition smaller than this time
span. Interestingly, MalwareWorld is sometimes faster than its
feeds. For example, in 68% of the times it was faster than
Turris and in 30% they were simultaneous. Indeed, only 251
of their common IPs (0.9%) were first indexed by Turris. As
discussed before, this confirms that the sanitized IPs released
by Turris were included in other feeds from MalwareWorld.
Takeaway. Systematic propagation of records from one list to
another can be an artifact of both lists feeding from the same
sources with different update times, but it can also mean that
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the second list is aggregating records from the first one. We
also note that these might be due to re-offending entities, but
the percentage of these is negligible for our period of study.
Even if we have not measured accuracy of the content indexed
by each blocklist, we hypothesize that aggregators feeding
from many other providers in an automated and rapid way
might get a broader coverage, but can also include outdated
records and false positives. While IPs propagate fast across
blocklists, some providers take longer to include them than
others. We argue that these providers likely curate their records
in an attempt to reduce false positives. This behavior also
prevents users from taking the presence of the same records
in multiple blocklists as an indication of consensus, as some
blocklists potentially copy from each other without verifying
or validating the soundness of their sources.

IX. THE PROBLEM OF LABELING

As discussed in Section IV-A, one of the problems with
blocklists is the lack of transparency regarding the nature of
their contents. In this section, we look at several ways in which
users can infer why a given entry was blocklisted and the
challenges and problems associated to the labeling of records.

A. Provider-defined labels

We find 358 different vendor-provided labels for 73% of the
blocklists. This confirms that (1) over 25% of the providers do
not clearly document the nature of their blocklists; and (2) the
lack of an established classification framework for blocklists
has resulted in providers defining whatever custom labels they
deem appropriate to tag their records (e.g., “nefarious-activity-
abuse”). Some providers opt to have bigger lists that contain
entries related to a general problem (e.g., “Malware”), while
others have more lists broken down into specific types of
attacks (e.g.,“Mirai” or “VoIP attacks”). This results in a big
constellation of labels that can make it hard for users to make
sense of what exactly the content of each list is.

These inconsistencies—which bear some resemblance with
the classic malware labeling problem [50]—might be caused
by different vendor sensitivities or by the need to address
a particular market. For instance, while an email-protection
vendor labels an IP block as spam [51], a phishing-oriented
source might refer to it as phishing [52]. As a result, blocklist
consumers might not be aware of the subtle differences or
similarities between such labels and their actual purpose,
soundness, and accuracy. Differences in labels can affect the
ability from users to judge whether a given blocklist or record
is relevant to the specific blocking needs of a system. This
can also result in unwanted side-effects, as users might end up
blocking entries that are not necessarily malicious or danger-
ous for their application. Furthermore, labeling inconsistencies
make it hard for users to compare and merge together lists
from different providers, as understanding which labels are
equivalent to each other might not be obvious. This issue can
be further aggravated when the blocklist aggregation process
is done automatically.

B. Measuring labeling disagreements

This subsection measures how different approaches to data
labeling, combined with the propagation of records from one
list to another, can result in the same entry being labeled
differently by different providers. To do so, we need to reduce
the number of labels to a manageable figure, as it would be
hard to draw accurate conclusions over 358 different labels.
We follow a clustering approach and made a manual effort to
normalize all observed labels into the following 8 meta-labels:
Malware (39% of blocklists). Any form of engagement
in malware distribution, without distinction of the type of
malicious software involved.
Attack (15%). Sites engaged in (possibly various forms of)
malicious activities, but not exclusively restricted to malware.
Miscellanea (3%). Blocklists that serve multiple purposes and
therefore do not clearly fall in a single category.
Anonymity (1%). Sites or services providing some form of
source anonymity for communications.
Phishing (0.9%). Sites engaged in phishing activities regard-
less of the specific technique.
Spam (0.6%). Distribution of unwanted messages regardless
of the purpose or the channel (email, social networks, etc.).
Anti-tracking (0.2%). Blocklists used to block advertising or
tracking services. Also includes ad-blocking.
Bad reputation (0.2%). Sites with a bad reputation score,
though no specific reason is known.

For the remainder 40% of blocklists, the provider does not
supply an original label or enough information to classify the
blocklist into any of the above categories. We tag them as
Not defined. Each one of these normalized labels refers to a
different underlying phenomenon explaining the nature of the
blocklist, such as an abuse type (e.g., Malware or Spam) or
a relevant signal for filtering (e.g., Anonymity). Nevertheless,
this normalization process relies on the manual inspection and
codification of scarce, incongruent, and often confusing terms.

Label changes. We investigate how often a given record
appears later on in a blocklist with a different meta-label than
the original label observed. We find that 14.8% of all entries
appear in blocklists with at least two different labels. For these
entries, the median number of different labels that they have is
2, with some records being indexed by blocklists accounting
together for as many as 6 different labels.

Figure 7 shows how often a record label changes between
two specific meta-labels. We note that we exclude pairs of la-
bels that represent less than 0.05% for visibility reasons. Most
of these changes are caused by differences in classification
strategies between different providers. For instance, we find
that the most common cases of label changes are entries that
are labeled as “Miscelanea” changing to more specific labels
such as “Attack”, “Malware” or “Anonymity”. This can be
a direct result of providers using different strategies to label
threats, and also of some providers that maintain lists that
aggregate entries from different types of threats, while others
are much more specialized. We also find that it is common for
entries labeled as “Attack” to later appear on blocklists labeled
as “Malware”, “Anonymity” or “Bad Reputation”.
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Figure 7: Label changes of entries across blocklists of different
categories

While we can not automatically and systematically study
why a given record changes labels, we manually look at the
cases with a higher number of labels. Namely, there are 9
IPs—all belonging to TOR exit nodes—that have 6 different
labels. IPs from exit nodes can be used by many different
users that might engage in different type of activities (illicit
or not). Therefore, we believe that these label changes are a
direct result of the different potentially malicious uses that
TOR users are making of this exit node (e.g.,a user can use
this exit node to launch an attack or to distribute malware,
while another one uses it to distribute spam).

Label changes like those observed in our measurement can
affect negatively the effectiveness of blocklisting as a security
strategy, for instance, by aggravating the problem of incorrect
blocking. In addition, it forces end-users to put in place
a reconciliation mechanism to unify labels when different
decisions are to be made over different categories of entries.

C. Label comparison with external data sources

One way in which end-users can try to overcome the
limitations of labels based on provider information is to add
extra information from external sources. We extended our
analysis to analyze every hostname, URI and IP indexed
in our dataset with Fortiguard [29], a commercial domain
classification and threat intelligence service specialized in
content filtering. Following the recommendations of Vallina et
al. [53], we use Fortiguard for three main reasons: 1) its high
coverage (i.e.,the number of entries for which it provides a
meaningful label); 2) its label constellation, which includes
specific labels for malicious services; and 3) its ability to label
IP addresses. While Fortiguard is able to provide a meaningful
label for some IP addresses, IP-level blocking is not really
what the service is built for. To the best of our knowledge,
there is no free and unlimited service that provides information
about the type of service behind an IP. This translates on
Fortiguard’s coverage on IPs (1%) being much lower than
for hostnames (46%) and URIs (99%), and in consequence
reducing the general coverage to 31% of the total entries.

Figure 8 shows the 10 most popular labels for all entries
present in blocklists (31% of the total ones). We observe that
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Figure 8: Top-10 most common labels in hostnames, URIs
IPs according to Fortiguard. The percentage is relative to the
number of entries labeled by Fortiguard.

Fortiguard categorizes as malicious 83% of the labeled entries,
highlighting the presence of Spam URLs (52%), Malicious
Websites (18%), Phishing (12%), and Dynamic DNS (1%).
Labeled Blocklists. One of the main problems with dedicated
blocklists, defined as those created to block a specific type of
content, is to quantify if the indexed entries can be defined
with the label assigned to the blocklist (e.g.,spam domains
in a blocklist for spam). To this end, we aggregated all
the entries indexed on blocklists equally labeled using the
meta-labels defined in Section IX-B. For some categories,
we observe that adding Fortiguard data can increase the
confidence of the original label, as most domains fall in a
category equivalent to this label. For instance, we observe that
55% of the entries indexed on phishing blocklists are labeled
as phishing. Similarly, in Malware blocklists, 32% and 14%
of the labeled entries (77% of the total entries) are labeled as
Malicious Websites and Phishing respectively. In some cases,
this external data contradicts the original label, as in the case
of the blocklists labeled as spam, for which less than 15% of
the indexed entries are classified as malicious. However, in this
particular case, Fortiguard only provides a meaningful label for
1% of the entries. Finally, in the case of blocklists with the
Not defined super category (i.e., those that we were not able
to classify), we observe that 75% of the labeled entries are
classified as potential malicious services, with 49% of them
labeled as Malicious Websites.

This experiment highlights the fundamental issues that exist
in the open blocklist ecosystem. It also shows how relying on
external data sources to the cyberdefense pipeline can help
blocklist consumers in two ways: (1) if the provider label
agrees with the external label, this increases the confidence on
the record’s correct classification (and mitigate undesired side-
effects); and (2) records in blocklists where the provider does
not include enough information to label the entries can benefit
from the use of an external data source such as Fortiguard to
make up for the lack of a classification.
Takeaway. We have shown that most blocklist providers
follow very different strategies for labeling their data, find-
ing a total of 358 labels in our dataset. Furthermore, even
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when applying an artificial grouping to try and reduce the
dimensionality of the problem, the lack of information given
by a large number of providers (40%) alongside the high
number of entries that present more than one label during
our study (14.8%) make it extremely difficult to rely on
provider info for labeling entries. Finally, we showed that
adding external data sources (such as Fortiguard) can help
increasing confidence on the original labels, or providing a
classification when the provider does not. Nevertheless, the
low coverage of these external services (31%), particularly for
IP-level records, prevents this from being a complete solution
to the problem.

X. DISCUSSION

Our analysis reveals that, despite their popularity, block-
lists present poorly understood dynamics. Their update rates
depend on the provider and the type of records that they
index, and the lack of transparency and homogeneity in the
ecosystem opens critical operational and research challenges.
In this section, we discuss the most relevant implications of
our study and aims to provide recommendations to providers,
researchers and practitioners.
Recommendations for providers. We believe that there are
several steps that providers can take to improve the ecosystem
of open source blocklists. Mainly, all providers should make
an effort to be more transparent. Blocklists should provide
users with a clear explanation of the type of records that
they contain, how they are gathered, and whether they take
care of removing false positives. Then, users could choose
what is the list that better suits their needs, reducing the risks
of over and under-blocking. We also believe that providers
should come up with a common way to label entries. One
way would be to define a common taxonomy, with clear rules
for including a given record into a specific category. Efforts
by the antivirus community such as XARF and MARF [54],
[55] are a good example on how these common taxonomies
can be helpful for the ecosystem. Another possibility is to
move towards more standardized taxonomies such as MISP.
MISP galaxy [56] provides a common structure that can be
used to report malicious entries, helping companies and users
process blocklists without the need to create ad-hoc parsers
for each provider. Reaching a consensus on labeling practices
and blocklists format would increase the overall applicability
of these lists and ease the process of blocklist comparison,
integration and maintenance.
Recommendations for blocklist users. While providers’
opacity makes it hard, users should try to understand as much
as possible from a given list before using it. In this paper we
have shown how compiling records to block from several lists
is not always helpful, as often this can lead to over-blocking
and even under-blocking, since lists can be feeding off each
other. Whenever possible, users should move towards those
lists that are clear about how records are collected, as well
as about their data sanitization and record removal processes.
When users can not find a transparent list that fulfills their
needs, we advise them to monitor the blocklist for a period of
time before including it as part of their blocking infrastructure.

This will allow them to better understand the type of entries
indexed on every blocklists, as well as their dynamics, in order
to implement blocking mechanisms accordingly to their needs.

XI. CONCLUSIONS AND FUTURE WORK

In this paper, we empirically studied the transparency and
dynamics of the ecosystem of open blocklists providers,
gathering a dataset of 2,093 from 69 during a time pe-
riod of approximately 6 months. We look at the synergies
between blocklists, finding a high overlap between specific
providers. We find that addition and removal of records is
often propagated across those providers that have a high
overlap. Interestingly, we find that other studies that include
commercial blocklists reach different conclusions in terms of
the overlap between providers [5], further proving that there
are notable differences between both ecosystems. We also
show that it is difficult to understand what is the content of
these lists, as providers often fail to accurately label their data
and document their processes. As a result, the same record
can be labeled differently by distinct providers.

Gathering ground truth to measure the accuracy of blocklists
is challenging [5]. While we attempt to use external data
sources in our analysis as a form of ground truth, we nonethe-
less observed contradictions and mislabeling with respect to
other blocklists. Establishing a tie breaker in this ecosystem
requires an effort among the actors to unify and automate
their classification procedures and criteria. This poses new
challenges to the community (especially the open source one)
in order to achieve new collaborative and open models. This
lack of ground truth disallows us to understand whether IPs
are re-offending (i.e.,being reused for a different purpose at
a different times) or not (i.e.,being used for several ones
at the same time). In general, classifying which IPs present
potentially malicious behaviors is a complex (and unsolved)
problem that falls out of the goals of this study.

In summary, future approaches to enhance and standardize
threat intelligence feeds should emphasize transparency and
unifying criteria to ease their compilation, vetting and main-
tenance, which will improve their effectiveness.
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Figure 9: Mean overlap coefficient between lists when grouped by providers
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Figure 10: Mean Jaccard index between lists when grouped by providers
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