
Julien Gamba

“Do Androids Dream of Electric Sheep?”

On Privacy in the
Android Supply Chain

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Universidad Carlos III de Madrid 2022

“Do Androids Dream of Electric Sheep?”

On Privacy in the Android Supply Chain

Prepared by:

Julien Gamba, IMDEA Networks Institute, Universidad Carlos III de Madrid

contact: julien.gamba@imdea.org

Under the advice of:

Narseo Vallina-Rodriguez, IMDEA Networks Institute

This work has been supported by:

Android logo source: Google

Unless otherwise indicated, the content of is thesis is distributed under a

Creative Commons Attribution - Non Commercial - Non Derivatices (CC BY-NC-ND).

Pour Anne-Laure

Acknowledgements

I
t would be impossible to thank all the people that helped me get through this journey,

even though I have to try. First and foremost, I want to thank my family for their love

and encouragement over the last few years. Without their support I surely would

not have reached this milestone. This is especially true for my wife, Anne-Laure, who knows

firsthand the true amount of work that went into this thesis. Thank you.

I would like to thankmy advisor, Narseo Vallina-Rodriguez, for his help and support during

my PhD, and all of my co-authors, for their contributions to this thesis. I also want to thank

Cristel Pelsser, Pascal Mérindol, and Stéphane Cateloin for introducing me to the world of

scientific research back at the University of Strasbourg.

Finally, I want to thank all my friends and colleagues for bearing with me for the past few

years, Álvaro Feal, Aniketh Girish, Benjamin Chetioui, and Constantine Ayimba in particular.

There are too many of you to list here, but if you recognize yourself along these lines: thank

you.

Julien

vii

Published and Submitted Content

The following list includes other research papers I have co-authored during the course of my

PhD, and that are included in this thesis.

1. An Analysis of Pre-installed Android Software

JulienGamba, Mohammed Rashed, Abbas Razaghpanah, Narseo Vallina-Rodriguez and

Juan Tapiador

In IEEE Symposium on Security and Privacy 2020, 18-20 May, San Francisco, CA, USA

DOI: https://doi.org/10.1109/SP40000.2020.00013

• The author’s role in this work is focused on designing the data collection strategy,

the ecosystem and static analysis of apps.

• This paper is fully included in this thesis as chapter 5.

• The material from this source included in this thesis is not singled out with typo-

graphic means and references.

This paper has been awarded the best practical paper award at the symposium, the

CNIL-INRIA Privacy Protection Award and the 2020 AEPD Emilio Aced Prize.

2. Mules and Permission Laundering in Android: Dissecting Custom Permissions in the Wild

Julien Gamba, Álvaro Feal, Eduardo Blazquez, Abbas Razaghpanah, Juan Tapiador, and

Narseo Vallina-Rodriguez

Submitted to IEEE Transactions on Dependable and Secure Computing on the 2nd of

May, 2022

• The author’s role in this work is focused on designing the data collection strat-

egy, the ecosystem analysis, and the design and implementation of the app static

analysis tools.

• This paper is fully included in this thesis in Chapters 7.

ix

https://doi.org/10.1109/SP40000.2020.00013

• The material from this source included in this thesis is not singled out with typo-

graphic means and references.

3. Trouble Over-The-Air: An Analysis of FOTA Apps in the Android Ecosystem

Eduardo Blázquez, Sergio Pastrana, Álvaro Feal, Julien Gamba, Platon Kotzias, Narseo

Vallina-Rodriguez and Juan Tapiador

In IEEE Symposium on Security and Privacy 2021, 23-27 May, virtual event

DOI: https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00095

• The author’s role in this work is focused on the data collection of pre-installed apps,

as well as the initial permission analysis.

• This paper is partly included in this thesis in Chapters 2 and 5.

• The material from this source included in this thesis is not singled out with typo-

graphic means and references.

x

https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00095

Other Research Merits

The following list includes other research papers I have co-authored during the course of my

PhD, but that are not included in this thesis.

1. Mixed Signals: Analyzing Software Attribution Challenges in the Android Ecosystem

Kaspar Hageman, Álvaro Feal, Julien Gamba, Aniketh Girish, Jakob Bleier, Martina

Lindorfer, Juan Tapiador, Narseo Vallina-Rodriguez

Submitted to IEEE Transactions on Software Engineering on the 13th of April, 2022

2. Not Your Average App: A Large-scale Privacy Analysis of Android Browsers

Amogh Pradeep, Álvaro Feal, Julien Gamba, Ashwin Rao, Martina Lindorfer, Narseo

Vallina-Rodriguez, and David Choffnes

Submitted to Privacy Enhancing Technologies Symposium (PETS) 2023, Lausanne, Switzer-

land.

3. Blocklist Babel: On the Transparency and Dynamics of Open Source Blocklisting

Álvaro Feal, Pelayo Vallina, Julien Gamba, Sergio Pastrana, Antonio Nappa, Oliver

Hohlfeld, Narseo Vallina-Rodriguez and Juan Tapiador

In IEEE Transactions on Network and Service Management. April 2021

4. Mis-shapes, Mistakes, Misfits: An Analysis of Domain Classification Services

PelayoVallina-Rodriguez, Victor Le Pochat, Álvaro Feal, Marius Paraschiv, JulienGamba,

Tim Burke, Oliver Hohlfeld, Juan Tapiador and Narseo Vallina-Rodriguez

In ACM IMC 2020, Oct. 27 - 29, virtual event

5. Don’t Accept Candy from Strangers: An Analysis of Third-party SDKs

Álvaro Feal, JulienGamba, Narseo Vallina-Rodriguez, PrimalWijesekera, Joel Reardon,

Serge Egelman and Juan Tapiador

In Computers, Privacy and Data Protection Conference (CPDP), 22-24 January 2020,

xi

Brussels, Belgium

6. Tales from the Porn: A Comprehensive Privacy Analysis of the Web Porn Ecosystem

Pelayo Vallina-Rodriguez, Álvaro Feal, Julien Gamba, Narseo Vallina-Rodriguez and

Antonio Fernández

In ACM IMC 2019, Oct. 21 - 23, Amsterdam, The Netherlands

7. A Long Way to the Top: Significance, Structure, and Stability of Internet Top Lists

Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmermann,

Stephen Strowes and Narseo Vallina-Rodriguez

In ACM IMC 2018, Oct. 31 - Nov. 2, Boston, MA, USA

This paper has been awarded theACMSIGCOMMCommunityContributionAward.

8. An Analysis of Pre-installed Android Software

JulienGamba, Mohammed Rashed, Abbas Razaghpanah, Narseo Vallina-Rodriguez and

Juan Tapiador

In National Cybersecurity Research Conference (JNIC) 2018, San Sebastián, Spain.

9. This Is My Private Business! Privacy Risks on Adult Websites

Pelayo Vallina-Rodriguez, Julien Gamba, Álvaro Feal, Narseo Vallina-Rodriguez and

Antonio Fernández-Anta

In National Cybersecurity Research Conference (JNIC) 2018, San Sebastián, Spain.

xii

Abstract

T
he Android Open Source Project (AOSP) was first released by Google in 2008 and

has since become the most used operating system [Andaf]. Thanks to the open-

ness of its source code, any smartphone vendor or original equipment manufac-

turer (OEM) can modify and adapt Android to their specific needs, or add proprietary features

before installing it on their devices in order to add custom features to differentiate themselves

from competitors. This has created a complex and diverse supply chain, completely opaque to

end-users, formed by manufacturers, resellers, chipset manufacturers, network operators, and

prominent actors of the online industry that partnered with OEMs. Each of these stakeholders

can pre-install extra apps, or implement proprietary features at the framework level.

However, such customizations can create privacy and security threats to end-users. Pre-

installed apps are privileged by the operating system, and can therefore access system APIs

or personal data more easily than apps installed by the user. Unfortunately, despite these

potential threats, there is currently no end-to-end control over what apps come pre-installed

on a device and why, and no traceability of the different software and hardware components

used in a given Android device. In fact, the landscape of pre-installed software in Android and

its security and privacy implications has largely remained unexplored by researchers.

In this thesis, I investigate the customization of Android devices and their impact on the

privacy and security of end-users. Specifically, I perform the first large-scale and systematic

analysis of pre-installed Android apps and the supply chain. To do so, I first develop an app,

Firmware Scanner [Sca], to crowdsource close to 34,000 Android firmware versions from 1,000

different OEMs from all over theworld. This dataset allows us tomap the stakeholders involved

in the supply chain and their relationships, from device manufacturers andmobile network op-

erators to third-party organizations like advertising and tracking services, and social network

platforms. I could identify multiple cases of privacy-invasive and potentially harmful behav-

iors. My results show a disturbing lack of transparency and control over the Android supply

chain, thus showing that it can be damageable privacy- and security-wise to end-users.

Next, I study the evolution of the Android permission system, an essential security feature

xiii

of the Android framework. Coupled with other protection mechanisms such as process sand-

boxing, the permission system empowers users to control what sensitive resources (e.g., user

contacts, the camera, location sensors) are accessible to which apps. The research community

has extensively studied the permission system, but most previous studies focus on its limita-

tions or specific attacks. In this thesis, I present an up-to-date view and longitudinal analysis

of the evolution of the permissions system. I study how some lesser-known features of the

permission system, specifically permission flags, can impact the permission granting process,

making it either more restrictive or less. I then highlight how pre-installed apps developers

use said flags in the wild and focus on the privacy and security implications. Specifically, I

show the presence of third-party apps, installed as privileged system apps, potentially using

said features to share resources with other third-party apps.

Another salient feature of the permission system is its extensibility: apps can define their

own custom permissions to expose features and data to other apps. However, little is known

about how widespread the usage of custom permissions is, and what impact these permissions

may have on users’ privacy and security. In the last part of this thesis, I investigate the exposure

and request of custom permissions in the Android ecosystem and their potential for opening

privacy and security risks. I gather a 2.2-million-app-large dataset of both pre-installed and

publicly available apps using both Firmware Scanner and purpose-built app store crawlers.

I find the usage of custom permissions to be pervasive, regardless of the origin of the apps,

and seemingly growing over time. Despite this prevalence, I find that custom permissions are

virtually invisible to end-users, and their purpose is mostly undocumented. While Google rec-

ommends that developers use their reverse domain name as the prefix of their custom permis-

sions [Gpla], I find widespread violations of this recommendation, making sound attribution

at scale virtually impossible. Through static analysis methods, I demonstrate that custom per-

missions can facilitate access to permission-protected system resources to apps that lack those

permissions, without user awareness. Due to the lack of tools for studying such risks, I design

and implement two tools, PermissionTracer [Pere] and PermissionTainter [Perd] to study

custom permissions. I highlight multiple cases of concerning use of custom permissions by

Android apps in the wild.

In this thesis, I systematically studied, at scale, the vast and overlooked ecosystem of pre-

installed Android apps. My results show a complete lack of control of the supply chain which

is worrying, given the huge potential impact of pre-installed apps on the privacy and security

of end-users. I conclude with a number of open research questions and future avenues for

further research in the ecosystem of the supply chain of Android devices.

xiv

Table of Contents

Acknowledgements vii

Published and Submitted Content ix

Other Research Merits xi

Abstract xiii

Table of Contents xviii

List of Figures xx

List of Tables xxii

1 Introduction 1

1.1 Research Questions and Objectives . 6

1.2 Contributions and Organization . 8

1.3 Outline of this Thesis . 10

I The Android Operating System 13

2 Android 15

2.1 Android Architecture . 15

2.1.1 The Layers of Android . 15

2.1.2 Android Compatibility Program . 18

2.1.3 System Updates and FOTA Apps . 19

2.2 The Android Permission System . 20

2.2.1 Requesting a Permission . 21

2.2.2 Permission Enforcement . 21

2.2.3 Protection Levels . 22

xv

TABLE OF CONTENTS

2.2.4 Permission Groups . 23

2.2.5 Permission Trees . 23

2.2.6 Custom Permissions . 24

3 Related Work 27

3.1 Studying and Characterizing the Android Supply Chain 27

3.1.1 Android Images Customization . 28

3.1.2 Privacy and Security of Pre-installed Apps 29

3.2 The Android Permission System . 30

3.2.1 Characterization of the Permission System 30

3.2.2 Security and Privacy . 31

3.2.3 Custom Permissions . 33

3.3 Android App Analysis Techniques . 34

3.3.1 Static Analysis . 34

3.3.2 Dynamic Analysis . 35

3.3.3 Limitations for the Analysis of System Apps 36

II On the Impact of Customization on Users’ Privacy and Security 39

4 Collecting Pre-installed Apps at Scale 41

4.1 Firmware Scanner . 42

4.1.1 Workflow . 42

4.2 Data Collected . 44

4.3 Ethical Aspects . 45

5 Pre-installed Apps in Android Devices 47

5.1 Data Sources . 47

5.1.1 Lumen Privacy Monitor . 48

5.2 Supply Chain Analysis . 50

5.2.1 Developer Ecosystem . 50

5.2.2 Third-party Services . 52

5.2.3 Public and Non-public Apps . 53

5.3 Permission Analysis . 54

5.3.1 Defined Custom Permissions . 54

5.3.2 Requested Permissions . 61

xvi

TABLE OF CONTENTS

5.3.3 Permission Usage by Third-Party Libraries 63

5.3.4 Component Exposing . 64

5.4 Behavioral Analysis . 66

5.4.1 Static Analysis . 66

5.4.2 Traffic Analysis . 67

5.4.3 Manual Analysis: Relevant Cases . 70

5.5 A Case Study: Apps Accessing System Logs 76

5.5.1 Logged PII in the Wild . 76

5.5.2 System Logs Exfiltration . 77

5.6 Study Limitations . 79

5.7 Takeaways . 80

6 Evolution of the Permission System 83

6.1 Temporal Analysis of AOSP Permissions . 83

6.2 Permission Definition Flags . 85

6.2.1 Protection Level Flags . 85

6.2.2 Permission Flags . 87

6.3 Evolution of the Permission Granting Algorithm 88

6.4 Protection Level Flags Usage in the Wild . 90

6.4.1 Custom Permissions Usage by Privileged Apps 91

6.5 Takeaways . 92

7 Analyzing Custom Permissions Behaviour 93

7.1 Data Collection . 93

7.1.1 Data Sources . 94

7.1.2 Methodology for Extracting Custom Permissions 95

7.1.3 Ethical Considerations . 96

7.2 Prevalence of Custom Permissions . 96

7.2.1 Definition of Custom Permissions . 96

7.2.2 Requests of Custom Permissions . 99

7.3 Naming and Definition Conventions . 104

7.3.1 Naming Convention Violations . 105

7.3.2 (Lack of) Documentation for Custom Permissions 107

7.4 Detecting Leaky Custom Permissions . 108

7.4.1 Tooling . 109

xvii

TABLE OF CONTENTS

7.4.2 Results . 112

7.5 Takeaways . 115

III Conclusions and Open Issues 117

8 Discussion 119

8.1 Attribution and Accountability . 120

8.2 Privilege Escalation . 120

8.3 Transparency and User Control . 121

8.4 Consumer Protection Regulations . 122

8.5 Recommendations . 122

8.5.1 Attribution and Accountability . 123

8.5.2 Accessible Documentation and Consent Forms 123

9 Conclusion 125

9.1 Contributions . 125

9.1.1 The Android Pre-installed Apps Ecosystem 125

9.1.2 Evolution of the Android Permission System 126

9.1.3 Android Custom Permissions . 126

9.2 Open Issues and Future Work . 127

9.2.1 Android Framework Customization . 127

9.2.2 Native Libraries . 127

9.2.3 Dynamic Analysis . 127

Bibliography 129

Acronyms 170

xviii

List of Figures

1 Simplified illustration of the Android supply chain 2

2 Android stack (source: https://source.android.com/) 16

3 Example of an app defining a custom permission and protecting a service with

it. Only app3, which requests the permission, can interact with the service

exposed by app1. 24

4 Workflow of Firmware Scanner’s operating . 43

5 Screenshots from Firmware Scanner in operation on a device 44

6 Percentage of users per country as of the 11th of February, 2022 45

7 Number of files per vendor. We do not display the vendors for which we have

less than 3 devices. 49

8 Permissions defined by anti-virus firms, mobile network operators, chipset

vendors and third parties, requested by pre-installed apps. 62

9 Apps accessing vendors’ custom permissions. 64

10 System permissions requested by pre-installed apps embedding third-party li-

braries. 65

11 Evolution of the number of AOSP permissions per Android release 84

12 Protection level flags per major Android release. Each black number represents

a protection level flag, and each blue number a permission flag. 85

13 Flow chart of the permission granting algorithm 89

14 Number of custom permissions requested or defined per target API level, bro-

ken down by the origin of the app . 97

15 Number of custom permissions defined by core Android components across

783 OEMs and 17,973 device models . 98

16 Base protection level usage per origin of the app for defined custom permissions. 99

xix

https://source.android.com/

LIST OF FIGURES

17 Number of apps requesting custom permissions in our dataset, broken down

by the origin of the defining app . 100

18 Number of requested permissions defined by pre-installed apps, broken down

by the origin of the requesting app (left part) and the vendor for pre-installed

apps (right part). 103

19 Phylogenetic tree of custom permissions requested by at least 2,000 apps each,

grouped by their second level domain. The colors represent the most common

SLDs: com.google, com.huawei, com.sec, com.samsung Note that

the com.sec prefix might in fact be related to Samsung’s Knox API [Knoa] . . 104

20 Treemap of custom permissions requested by at least 2,000 apps each, grouped

by their second level domain. For readability, we do not include the top 10most

common SLDs. The excluded prefixes seems to be associated with Samsung

(com.samsung, com.sec, .sec), Google (com.google), Huawei (com.huawei,

.huawei), HTC (com.htc), and other entitieswhichwe could not identify (org.adw,

android.permission, com.android) . 105

21 Scenario where an attacker bypasses the permission model using a service pro-

tected by a custom permission. The circled numbers indicate the order of each

step. 109

xx

List of Tables

2.1 Test suites for Android devices compatibility and certification [Mst] 19

4.1 List of data collected by Firmware Scanner. A * in a location denote a subfolder,

i.e., a potential location in all existing system partitions 42

4.2 Dataset collected by Firmware Scanner as of the 6th of May, 2022 44

5.1 General statistics for the top-10 vendors in our dataset. 48

5.2 Left: top-10 most frequent developers (as per the total number of apps signed

by them), and right: for other companies. 51

5.3 Selected third-party libraries categories present in pre-installed apps. In brack-

ets, we report the number of TPLs when grouped by package name. 52

5.4 Summary of custom permissions per provider category and their presence in

selected sensitive Android core modules. The value in brackets reports the

number of Android vendors in which custom permissions were found. 55

5.5 Examples of custom permissions frommanufacturers andMNOs. Thewildcard

* represents the package namewhenever the permission prefix and the package

name overlap. 56

5.6 Examples of custom permissions from third-party services and chipsets man-

ufacturers. The wildcard * represents the package name whenever the permis-

sion prefix and the package name overlap. 57

5.7 Facebook packages on pre-installed handsets. 59

5.8 Volume of apps accessing / reading PIIs or showing potentially harmful behav-

iors. The percentage is referred to the subset of triaged packages (N = 3; 154). 68

5.9 Top 20 parent ATS organizations by number of apps connecting to all their

associated domains. 69

xxi

LIST OF TABLES

5.10 Examples of relevant cases found after manual analysis of a subset of apps.

When referring to leaks, the term PII encompasses items such as those enu-

merated in Table 5.8 in the categories “Telephony identifiers”, “Device settings”,

and “Network interfaces.” . 71

5.11 Number of devices with PII in their system logs 77

6.1 Number of unique permission definitions that use either protection level or

permission flags, broken down by the vendor of the device on which the defin-

ing apps were found (according to the build fingerprint). For readability, we

only display the top 10 vendors, and group all the others into the “Others”

column. 90

7.1 Number of unique apps (based on their MD5 hash) and custom permissions per

data source, with and without permissions associated with push notification

services. We merge the apps downloaded from AndroZoo with their market of

origin if we consider said market in our study (e.g., we merge AndroZoo apps

downloaded from Google’s Play Store into a Google Play set). Otherwise, we

group them together as “AndroZoo.” . 94

7.2 Top 20most requested custompermissions in our dataset, in order. We infer the

creator of those permissions using the Subject field of the signing certificate

of the APKs . 100

7.3 Most popular second level domains for custompermissions defined or requested

by apps on public app stores . 102

7.4 Number of custom permissions definitions that do not follow the naming con-

vention. Note that an app definingmultiple custompermissionswill be counted

multiple times in this table. 106

7.5 Percentage of custom permissions definitions (grouped by their SLD or not)

without description per app origin . 107

7.6 Number of apps defining placeholder permissions and apps dynamically en-

forcing custom permissions broken down by dataset of origin. 115

xxii

Chapter 1

Introduction

“The story so far:
In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad move.”

— Douglas Adams, The Restaurant at the End of the Universe (1980)

T
he Android operating system (OS) started as Android Inc,̇ a California based start-

up found in October 2003 [Andw] by Andy Rubin, Rich Miner, Nick Sears, and

Chris White. The founders’ initial goal was to create an OS for smart camera based

on the Linux kernel, but then later adapted it to smartphones [Andl]. Google bought the

company in 2005 [Goob], and went on to develop the operating system.

In 2007, Google, along with 34 other tech companies, unveiled the Open Handset Al-

liance (OHA), a consortium dedicated to developing open standards for mobile devices. The

announced goal was to create “the first truly open and comprehensive platform for mobile de-

vices” [Andy]. A preview source code of the first Android Software Development Kit (SDK)

was released a week after that announcement to attract developers [Andag]. The first official

version of Android was released in 2008 [Andk], along with the first Android-powered smart-

phone, the HTC Dream [Htc].

Android has since grown to be the most used OS, with at least three billion active devices

as of May 2021 [Andaf].1 A major factor to this rapid adoption of Android is its open source

model [Aosb]. Each component of the OS can be modified by a phone manufacturer or an

original equipment manufacturer (OEM, a contractor that can produce a device on behalf of

another company) before being installed on a device. Such customization of the OS are en-
1There are reasons to believe that the true number of active Android devices is even higher, as the three bil-

lion figure only includes devices that use Google’s Play Store, and so does not take into account devices that use
alternative app stores.

1

CHAPTER 1. INTRODUCTION

Chipsets
manufacturers

ODM /
Vendors

App markets MNOs
Resellers /
Distributors

Figure 1: Simplified illustration of the Android supply chain

couraged by Google [Andu]. In practice, manufacturers take advantage of the openness of the

OS to distinguish themselves from their market competitors.

Because of this openness, the supply chain of Android devices involves a large and diverse

number of stakeholders, from the creation of the device to its manufacturing and distribution.

In Figure 1, I illustrate the typical stakeholders involved in the supply chain, from the design

to the end user. While the actual number of stakeholders can vary depending on the com-

plexity of the model and the commercial partnerships between them and other companies, the

commercialization of most devices involves the following actors:

• Chipset manufacturers: at the beginning of the supply chain are the chipset man-

ufacturers such as Qualcomm or MediaTek. These companies are responsible for the

manufacturing of essential electronic components and provide software (including apps

and drivers) to interact with said components.

• Devicemanufacturers: these actors are the most visible ones, as it involves the brands

known to the end user. Device manufacturers are the companies that actually assemble

the components and load the firmware. Here I also include Original Equipment Manu-

facturers (OEM) and Original Device Manufacturers (ODM) which are contractors hired

by the phone vendors to externalize the manufacturing of the phones (an OEM will

manufacture a device based on the vendor’s design, while an ODM will create a design,

potentially from scratch, and manufacture the devices).

• App markets: certified devices can come with the Google apps suite pre-installed

(e.g., Google Play Store, YouTube, Gmail), which also includes the Google Play Store

app. Only phones certified by the Google Android team can pre-install the Google

Play Store [Andb]. Devices can also pre-install alternative app marketplaces, such as

the Amazon Appstore [Amaa]. Devices can also come pre-installed with regional app

markets [Wan+18a] (e.g., Chinese devices may come pre-installed with app stores from

Baidu [Baia] or Tencent [Tena]).

• Mobile NetworkOperators (MNO):MNOs can create strategic partnerships with ven-

2

dors to sell devices to users at lower prices in exchange for a subscription to their ser-

vices. In these cases, MNOs can pre-install apps to add value to the device or to ease

access to MNOs-related services (e.g., a companion app to keep track of data consump-

tion and data plan).

• Resellers and distributors: finally, at the end of the supply chain are resellers and dis-

tributors. This includes brick-and-mortar shops as well as online shops such as Amazon

or eBay.

These stakeholders are the ones of the typical supply chain of an Android device, but the

actual supply chain of a given device can vary across brands. In fact, what makes the Android

supply chain unique is the variable number of stakeholders that can be involved at any point,

and its diversity: for instance, two copies of the same device model might have a different set of

pre-installed apps depending on the country in which they were bought. Moreover, the supply

chain can be dynamic, with extra apps installed without interaction with the user when they

first boot the device. Any of the stakeholders can also pre-install software from their partners,

expose features to other apps on the device, or even change core Android components, thus

giving these stakeholders access to a privileged vantage point to get information on the user.

Indeed, pre-installed2 apps are trusted by the system by default, and can even be pre-granted

permissions, without user interaction. Once installed, it is very difficult for a user to remove

them, if possible at all.

Android Supply Chain Issues

Not all pre-installed software is deemed as wanted by users, and the term “bloatware” is of-

ten applied to such software. The process of how a particular set of apps end up packaged

together in the firmware of a device is not transparent, and various isolated cases reported

over the last few years suggest that it lacks end-to-end control mechanisms to guarantee that

shipped firmware is free from vulnerabilities [Huaa; Sama] or potentially malicious and un-

wanted apps. For example, at Black Hat USA 2017, Johnson et al. [Joh; Kryb] gave details of

a powerful backdoor present in the firmware of several models of Android smartphones, in-

cluding the popular BLU R1 HD. In response to this disclosure, Amazon removed Blu products

from their Prime Exclusive line-up [Amac]. A company named Shanghai Adups Technology

Co. Ltd. was pinpointed as responsible for this incident. The same report also discussed the

case of how vulnerable core system services (e.g., the widely deployed MTKLogger compo-
2Throughout this thesis, I use the terms “pre-installed” and “pre-loaded” interchangeably to designate system

apps. This covers any app in the system partition, including those which could be installed dynamically after
purchase through FOTA components

3

CHAPTER 1. INTRODUCTION

nent developed by the chipset manufacturer MediaTek) could be abused by co-located apps.

The infamous Triada trojan has also been recently found embedded in the firmware of several

low-cost Android smartphones [Dr ; Tri]. Other cases of malware found pre-installed include

Loki (spyware and adware) and Slocker (ransomware), which were spotted in the firmware of

various high-end phones [Lok].

Android handsets also play a key role in the mass-scale data collection practices followed

bymany actors in the digital economy, including advertising and tracking companies. OnePlus

has been under suspicion of collecting Personally Identifiable Information (PII) from users

of its smartphones through exceedingly detailed analytics [Oned; Onec], and also deploying

the capability to remotely root the phone [Oneb; Onea]. In July 2018 the New York Times

revealed the existence of secret agreements between Facebook and device manufacturers such

as Samsung [Fac] to collect private data from users without their knowledge. This is currently

under investigation by the US Federal authorities [Nyt]. Additionally, users from developing

countries with lax data protection and privacy laws may be at an even greater risk. The Wall

Street Journal has exposed the presence of a pre-installed app that sends users’ geographical

location as well as device identifiers to GMobi, a mobile-advertising agency that engages in ad-

fraud activities [New; Ups]. Recently, the European Commission publicly expressed concern

about Chinese manufacturers like Huawei, alleging that they were required to cooperate with

national intelligence services by installing backdoors on their devices [Huab]. In March 2019,

it was reported that hackers managed to hijack the update process of Asus computers to install

malware [Asub]. While this does not involve pre-installed apps, it is a prime example of the

consequences of the size and lack of control over the agents forming the supply chain.

To make sure that every device can properly run any app regardless of their level of cus-

tomization, Google has set up a compatibility program, that states the minimum requirements

that the modified OS must meet to stay compatible with standard Android apps [Andg]. How-

ever, this compatibility program only sets software requirements and does not consider secu-

rity and privacy implications for the end user. Google also created a certification for devices,

to assess for their security and performance. Both phone vendors and ODMs can make their

devices certified [Cer]. This certification is mandatory in order to pre-install Google apps and

the Google Play Store on a device. Unfortunately, there is little information available regarding

the tests that are actually performed by Google before certifying devices, and it is not clear at

which stage of the manufacturing the tests are performed.

4

The Android Permission System and its Extensibility

Another vector for customization available to stakeholders of the supply chain is the Android

permission system. The Android OS implements a permission-based mechanism to control

how apps can access sensitive data and dangerous system features [Gplb] such as user contacts,

the camera, location sensors, or the system settings. Coupled with other protection mecha-

nisms such as process sandboxing, the permission system empowers users to control what

sensitive resources are accessible to which apps. The Android Open Source Project (AOSP) de-

fines a standard set of permissions that are supported by most Android devices. Any Google-

certified device [Ande; Andf] must implement the whole set of AOSP permissions to guarantee

their compatibility with the standard Android platform [Andh]. A decade of research in the

use, enforcement, and usability of AOSP permissions has revealed severe privacy and security

shortcomings inherent to the Android permission model [Fel+11a; Wij+15; Fel+12; Au+12a;

SC13; Rea+19; BNN17; Des14]. Consequently, many vulnerabilities were fixed gradually across

Android releases.

Android’s permission model possesses an interesting, overlooked feature: its extensibility.

By design, the Android framework allows any app developer to share features implemented in

their software with other apps in a “controlled” way by defining custom permissions [Gpla].

Therefore, custom permissions allow extending the capabilities offered by the Android OS and

the creation of new features exposed by pre-installed apps and facilitate the flourishment of

an open software ecosystem in which apps (and third-party libraries or SDKs) can share data

and components with other developers. However, custom permissions also pose security and

privacy risks as they can be (ab)used–intentionally or by mistake–to circumvent the standard

permission system and provide backdoored access to privileged data and features to apps that

are otherwise not permitted to do so, in a way akin to how covert and side channels oper-

ate [Rea+19].

The control and transparency mechanisms implemented by the Android operating sys-

tem are insufficient to protect users from abusive or insecure implementations of custom per-

missions. Google recommends using the reverse domain name as the prefix of such permis-

sions, and supplying a description of the custom functionality or data protected by the permis-

sion [Gpla; Andj], but, in practice, there is no enforcement of such recommendations [Gam+20].

Consequently, it is not possible to automatically knowwhat precise function or resource is pro-

tected by a custom permission, and how they are being integrated and used across Android

apps. This lack of control and transparency also manifests at installation time, which trans-

lates into profound implications in terms of user awareness and control: unlike official AOSP

5

CHAPTER 1. INTRODUCTION

permissions custom permissions are not listed in the app stores, and end users cannot grant

or deny apps access to them at runtime unless the developer willingly defines them with a

dangerous protection level.

Despite more than a decade of research into the Android ecosystem, the ecosystem of pre-

installed Android software and its associated privacy and security concerns have remained

neglected by the research community. This ecosystem has remained largely unexplored due to

the inherent difficulty to access such software at scale and across vendors. This state of affairs

makes this work even more relevant, since i) these apps – typically unavailable on app stores

– have mostly escaped the scrutiny of researchers and regulators; and i i) regular users are

unaware of their presence on the device, which could imply lack of consent in data collection

and other activities. Similarly, the research literature focused on the evolution of the permis-

sion system or on custom permissions is significantly narrow. As of now, no app analysis

tool has been able to capture the asynchronous behavior of custom permissions. Prior work

demonstrated, using proof-of-concept implementations, how custom permissions can enable

permission re-delegation and confused deputy attacks [Bag+15; Bag+18; Tun+18; Li+21]. Yet,

our understanding of the Android custom permissions landscape has remained low, particu-

larly in terms of their prevalence, usage, and potential misuse.

1.1 Research Questions and Objectives

Analyzing at scale the customization of Android devices poses a certain number of challenges.

As discussed previously, the openness of the Android ecosystem has led to the complexification

of the supply chain. There is a myriad of stakeholders that can pre-install apps, each with their

own business model and practices, therefore gaining privileged access to system resources and

potentially users’ personal data.

Moreover, pre-installed apps differ from publicly available apps: while a publicly available

app is standalone, pre-installed apps developers know in advance the environment in which

their app will run, i.e., the software and hardware specification of the device. Pre-installed

apps can safely rely on specific libraries or even other apps that will also come pre-loaded

on the device, for specific operations. As a consequence, pre-installed apps tend to use more

features of the Android OS such as shared user IDs3, to pool resources with other apps, or

custom permissions, to expose some of their components to a specific set of other apps on

the device; such features are typically less common in publicly available apps. I develop in
3The sharedUserId is a manifest attribute that allows a developer to specify the UID of their app, instead of

using a random one assigned by the OS [Sha]. Two apps signed by the same signing certificate that have the same
UID can share data more easily, as I will explain further in Chapter 2 (page 15).

6

1.1. RESEARCH QUESTIONS AND OBJECTIVES

depth such aspects in Chapter 2 (page 15). This can hinder the use of state of the art static and

dynamic analysis tools, as such tools expect a standalone entity to analyze, and might miss

inter-component and inter-app communication, or call to functions defined by non-standard

libraries that are otherwise not present in their emulated environment [Sto].

RQ1: Exploring the system Android apps ecosystem

Themajority of system apps are not publicly available and have therefore escaped the scrutiny

of the research community. This is especially worrying, as apps installed on system partitions

hold a privileged position in the Android operating system. However, the state of the art has

not produced any method to gather pre-installed apps directly from users’ devices, and relied

instead on crawling firmware images or on buying devices. None of those methods scale well.

It is, therefore, necessary to design novel, scalable methods to gather system apps.

There is also a dynamic component to the supply chain, which further complicates its

analysis. Modern devices includemechanisms to install updates for system apps, usually under

the form of a Fimware Over The Air (FOTA) app, which has the possibility of updating apps

even if said apps are installed on a system partition, or installing new apps on those partitions.

This implies that a FOTA app also has the ability to install new system apps, possibly after the

user start using the device, with the same issues as pre-installed ones.

The exploration of the modern Android supply chain is a necessary first step to uncover its

stakeholders and the relationship between them. I design an innovative crowdsourcingmethod

to collect pre-installed apps on users’ devices in a privacy-respecting manner, giving us an

accurate overview of the ecosystem in the wild, and allowing us to study its main stakeholders.

RQ2: Measuring the consequences on user privacy and security

Given the scale of the Android supply chain, and the high number of third parties that can pre-

install extra system apps, it is paramount to conduct a privacy and security analysis of these

apps. I first use static and dynamic analysis to try and understand the purpose of these apps

and highlight numerous potentially harmful behaviors in both high and low-end devices. I

specifically focus on apps that can access the full, unfiltered system logs–which might contain

private information–and manually analyze their code to understand in which circumstances

they access them, and whether they upload them on the Internet.

Another critical part of users’ security and privacy is the Android permission system. This

system has evolved over time, and it is unclear what the impact is on users’ security and

privacy. Specifically, I study how third-party apps make use of lesser-known features of the

7

CHAPTER 1. INTRODUCTION

permission system to potentially make features available to other apps.

Finally, custom permission can open the door to privacy and security abuses. The afore-

mentioned limitations make the automatic detection of privacy-invasive or malicious behav-

iors due to custom permissions challenging at best. I first evaluate the usability of state of the

art tools for the analysis of pre-installed apps and show that they are not suitable for these

purposes. I then develop my own analysis tools targeted specifically at these apps. Once I

have suitable tools for analysis, I conduct a large-scale privacy analysis of the pre-installed

apps ecosystem.

1.2 Contributions and Organization

In this thesis, I answer the research questions discussed above and make several contributions

to advance the state of the art.

Exploration of the pre-installed apps ecosystem

I first design a novel crowdsourcing method to create a dataset of pre-installed Android apps.

I created an app, Firmware Scanner, freely available on Google Play, that scans the system

partitions of Android phones and uploads pre-loaded apps to our server, along with metadata

about the device (e.g., information about the brand and model of the device, or the MCC and

MNC codes and country code of the SIM card). This metadata allows to identify stakeholders of

the supply chain and attribute customizations back to them. With this tool, I was able to gather

1,309,968 unique apps (according to their MD5 hash) from 33,915 unique devices (according to

their build fingerprint), coming from 1,050 unique vendors. This app relies on crowdsourcing

mechanisms, which allows me to capture also system apps dynamically installed. This data

is coming from devices from every continent, giving us an unprecedented overview of this

ecosystem, including regional customizations.

Armed with this dataset, I present in Chapter 5 (page 47) the first large-scale study of

pre-installed software and the supply chain on a global scale. This dataset allows us to char-

acterize the stakeholders involved in the supply chain, from device manufacturers and mobile

network operators to third-party organizations like advertising and tracking services, and so-

cial network platforms. To do this, I mainly rely on the analysis of information available in

the manifest of the app packages, their signing certificates, and the third-party libraries (TPLs)

they embed. my analysis covers 1,200 unique developers associated with the major manufac-

turers, vendors, and Internet service companies. I also uncover a vast landscape of third-party

services (11,665 unique third-party libraries) revolving around advertisement, analytics, and

8

1.2. CONTRIBUTIONS AND ORGANIZATION

social networking services. This chapter also explores the relationships between these stake-

holders, by analyzing the custom permissions defined by hardware vendors, MNOs, third-party

services, security firms, industry alliances, chipset manufacturers, and Internet browsers. Such

permissions can potentially expose data and features to over-the-top apps and can be used to

access privileged system resources and sensitive data in a way that circumvents the Android

permission model. A manual inspection illuminates a complex supply chain that involves dif-

ferent stakeholders and commercial partnerships between handset vendors and online service

providers. Overall, I show evidence that the supply chain around Android’s open source model

lacks transparency and has facilitated potentially harmful behaviors and backdoored access to

sensitive data and services without user consent or awareness.

Privacy analysis of pre-installed Android apps

In Chapter 5, I report numerous potentially harmful behavior in pre-installed apps, coming

from both first and third parties. I find that user tracking is prevalent in the pre-installed

apps ecosystem and that some apps abuse their privileged position by requesting permissions

usually reserved for system apps. In particular, I show in depth how some apps access the full,

unfiltered system logs, and then either store them on the SD card of the device or even upload

it on the Internet.

I then present in Chapter 6 a temporal evolution of the permission system, both in terms

of the number of AOSP permissions but also in complexity. I show the vast number of flags

that can be used by developers to slightly alter the permission granting algorithm, and their

impact on the permission granting algorithm which I formalize. Then, I show how these flags

are used by pre-installed apps in the wild, including by third-party system apps, which can

then make some features available to other apps on the device.

I then focus on custom permissions, which could potentially be used to circumvent the

AOSP permission system. The use of custom permissions is not limited to pre-installed apps,

however, and there could in fact be collusion between such apps and publicly available ones.

Therefore, I decide to investigate the custom permissions ecosystem as a whole, including apps

from any origin. In Chapter 7, I gather a 2.2-million-app-large dataset of both pre-installed and

publicly available apps from 8 different app stores, complemented with apps downloaded from

the Androzoo project [All+16]. With this dataset, I present the first longitudinal and large-

scale analysis of the usage of custom permissions in the Android ecosystem. I find that both

pre-installed and public apps both define and request a large number of custom permissions.

Namely, 58% and 67% of pre-installed and public apps request at least one, and 26% and 4%

9

CHAPTER 1. INTRODUCTION

define at least one, respectively. I find widespread violations of the naming recommendations

set by Google for custom permissions: 45% of definitions do not follow that recommendation.

For example, I find 722 custom permissions with the android.permission prefix, which is

explicitly forbidden by the Android Compatibility Definition Document (CDD). Despite this

prevalence, I find that custom permissions are virtually invisible to end users, and their pur-

pose is mostly undocumented. While there is a description tag to describe the purpose and

functionality of the custom permission, its usage is optional and I find that it is rarely used by

developers (missing in 75% of the cases).

This lack of transparency can lead to serious security and privacy problems: I show that

custom permissions can facilitate access to permission-protected system resources to apps that

lack those permissionswithout user awareness. However, therewere no available tools to trace

and understand the type of data or capability that is protected by a given custom permission,

making it difficult to assess their risk from a user’s privacy and security perspective. To fill

this gap, I present a novel method to triage apps that are potentially misusing custom per-

missions to access personal data, or perform other actions potentially detrimental to users’

privacy and security. My method relies on two custom-made tools: (1) PermissionTracer,

a tool that reports potentially-dangerous custom permissions and detects potential cases of a

privilege escalation attack in which an attacker can access permission-protected information

using custom permissions; and (2) PermissionTainter, a static taint analysis tool that inspects

the bytecode of apps that define custom permissions, to identify potential privacy leaks due to

those permissions. Thanks to these tools, I identify several potentially harmful implementa-

tions where an attacker could access sensitive data such as the location, Wi-Fi MAC address,

or contacts without requesting the corresponding AOSP permission.

Finally, I conduct a small-scale survey of app developers who defined some of these custom

permissions in order to understand their use case and rationale. My findings suggest that most

developers lack a clear understanding of their purpose and functioning. As a result, custom

permissions are often used due to poor software development practices or because they are

required to define them in order to integrate third-party SDKs.

1.3 Outline of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents an overview of the

Android operating system. I also present the different test suites that Google has created to

ensure that modified Android devices remain compatible with an unmodified version, and the

different mechanisms put in place to push updates to the system. The second part of this

10

1.3. OUTLINE OF THIS THESIS

chapter is dedicated to the Android permission system. In Chapter 3, I present the studies

from the state of the art most relevant to my contributions.

The second part of this thesis contains the main contributions of my work. This part starts

with Chapter 4, where I describe my novel method to collect pre-installed apps from users’

devices, relying on crowdsourcing mechanisms. Chapter 5 presents the first large-scale explo-

ration of the ecosystem of pre-installed apps, relying on a dataset of more than 82,000 apps

from more than 1,700 unique devices. I uncover the vast landscape of various organizations

that compose the supply chain of Android devices, including companies with a data-driven

business model. In Chapter 6, I present the temporal evolution of the Android permission sys-

tem and highlight multiple cases of privileged pre-installed apps making features available that

are potentially used by other third-party apps. Finally, I present in Chapter 7 a deep dive into

custom permissions and their usage in the wild. I present the design and functioning of two

tools I created, PermissionTracer and PermissionTainter, to detect custom permissions

that potentially facilitate access to permission-protected resources.

I conclude this thesis with a discussion of my main results in Chapter 8 and present the

main conclusions and possible future research directions in Chapter 9.

11

I

The Android Operating
System

Chapter 2

Android

“Would it save you a lot of time if I just gave up and went mad now?”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

S
ince its first release, Android became increasingly powerful and complex. This

added complexity is due in part to new features being added at every new release,

but also to harden the system to mitigate new security vulnerabilities or privacy

issues. Moreover, the openness of the operating system allows for any vendor to modify it,

adding another layer of complexity to the OS. This translates into heterogeneous OS versions

and potential security issues, a problem otherwise known as “fragmentation” of the OS. In

this chapter, we first describe the architecture of the Android OS and its different components

(§2.1). Wewill also discuss customization and compatibility issues, and focus on the parts of the

OS that we find are heavily modified in the wild, pre-loaded apps and the Android framework

in particular. Finally, we present an in-depth description of the Android permission system,

a central element of the operating system that can be extended by stakeholders of the supply

chain, most notably by the introduction of extra custom permissions defined by pre-loaded

apps (§2.2).

2.1 Android Architecture

2.1.1 The Layers of Android

Modern operating systems are not monolithic pieces of software, and Android is no excep-

tion. The Android OS is made of multiple pieces organized in different layers, as illustrated in

Figure 2.

15

CHAPTER 2. ANDROID

Figure 2: Android stack (source: https://source.android.com/)

Android apps

At the top layer of the stack are Android apps. We can distinguish two categories of apps:

user-installed and system apps, i.e., apps installed by any stakeholder of the supply chain on

one of the system partitions, which are read-only. Users cannot install new system apps on

their devices unless they root it first. Only FOTA apps, a critical system component responsible

for installing new apps or updating existing ones, can dynamically modify the content of the

system partitions after the phone is built. We detail more the role of FOTA apps in section 2.1.3.

Each Android app must embed a manifest file that contains essential information about

the app, such as its package name and version, the list of its components, and the list of per-

mission it requests [Appa]. In addition, each app must be signed with at least one digital

certificate [Sig]. Android uses this certificate as a proxy to identify the author of an app. How-

ever, Android accepts self-signed certificates, and there is no validation of the information

inputted in the certificate prior to publishing which can lead to attribution issues, as we will

see in depth in Chapter 5 (page 47).

There are no technical differences between system or user-install apps. However, system

apps are implicitly more trusted by the system, as they can only be installed by a trusted party

(e.g., the phone manufacturer or a FOTA component). As a result, there are some permissions

that are only available to system apps. Such restricted permissions protect the most sensitive

resources of the OS (for instance, android.permission.READ_LOGS gives access to the sys-

tem logs, which can contain sensitive information). We dig more in-depth into the Android

permission system in Section 2.2.

16

https://source.android.com/

2.1. ANDROID ARCHITECTURE

The framework

The Android framework bridges the gap between the operating system and the apps. This

allows developers to use higher-level languages such as Java or Kotlin to develop their Android

apps. It includes all of the application programming interfaces (APIs) that are made available

for developers to interact with the hardware (e.g., to get access to the user’s geolocation) but

also contains several APIs to facilitate app development (e.g., support for user accounts or UI

components). In practice, the framework is bundled into several .jar files loaded into the

/system/framework folder.

Some of the APIs defined by the framework can allow access to sensitive data or system

components (e.g., the GPS of the device). Offering unfettered access to these APIs and sensors

would pose grave security and privacy problems to users. The Android OS solves this problem

by implementing a permission system, which allows the user to allow (or not) access to a given

protected API. We describe in detail this permission system later in this chapter. We will also

study its temporal evolution in Chapter 6 (page 83), and focus on its extensibility (and the

underlying privacy and security issues) in Chapter 7 (page 93).

Native libraries

The Android OS includes several libraries by default, for a wide range of tasks (e.g., cryptog-

raphy, database management). This also includes drivers for the hardware components of the

device. Such libraries, as most Linux distributions, are compiled from C or C++ into ELF bina-

ries, which are then stored in the system partitions of the device. Some vendors can decide to

include extra libraries, either for specific hardware that their device embeds, or to enable extra

functionalities for developers.

Android runtime

The Android RunTime (ART) is Android’s runtime environment. It is the part of the OS that

executes the code of the app on the device. Initially, the OS was using the Dalvik Virtual

Machine (DVM) as its runtime environment. With the DVM, the Java bytecode of Android

apps would be translated into Dalvik bytecode, which would then be interpreted by the DVM.

The DVM would also profile apps as they run, and compile the most used segments of the

code into native code to increase performance (this process is called trace-based just-in-time

compilation). Android versions 5.0 and up do not use the DVM, and instead use ART, which

relied on ahead-of-time compilation. ART still uses the Dalvik bytecode format, to maintain

backward compatibility.

17

CHAPTER 2. ANDROID

Android apps can also use native libraries directly through the use of the Java Native In-

terface (JNI). This allows apps to escape the virtual machine and execute code directly from

native libraries, which can be helpful if an app needs to interact with a hardware component.

Google provide the Native Development Kit (NDK) [Andm], to help developers build native

libraries and include C or C++ code into their Android Package (APK).

Hardware abstraction layer

The Hardware Abstraction Layer (HAL) is another layer of abstraction, on top of the Linux

kernel. It is a set of standard interfaces that must be implemented by chipset manufacturers,

in order to function properly, regardless of the potential modifications added to the rest of the

operating system. Essentially, the HAL defines the interface that the Android OS expects for

a given category of device (e.g., camera, GPS).

Secure element

Some devices provide a secure element, which provides cryptographically secure storage of

data on the device (e.g., digital keys, credentials). The secure element is based on a separate

tamper-resistant hardware chipset and a standard API: Open Mobile API [Oma].

Linux kernel

Finally, at the bottom layer is the Linux kernel. The precise version of the kernel used varies

depending on the Android version. As for any Linux distribution, this layer provides a level of

abstraction for the hardware and contains essential hardware drivers. Note that Android runs

on a slightly modified version of Linux, to take into account the limitations of mobile devices,

such as a memory management system more aggressive in preserving memory than usual, or

the Binder Inter-Process Communication (IPC) driver, a crucial part of the operating system

which allow the exchange of messages between processes.

2.1.2 Android Compatibility Program

The openness of the Android source code makes it possible for any manufacturer to ship a cus-

tom version of the OS. Google does not forbid this behavior, and in fact encourages it through

its Android Compatibility Program [Andg], which sets the requirements that the modified OS

must fulfill in order to remain compatible with standard Android apps, regardless of the mod-

ifications introduced. The requirements are listed in the Compatibility Definition Document

18

2.1. ANDROID ARCHITECTURE

Table 2.1: Test suites for Android devices compatibility and certification [Mst]

Test suite Purpose Approval for
compatibility certification

CTS — Compatibility Test
Suite [Bgc] Ensuring compatibility with AOSP

GTS — Google mobile
services requirements
Test Suite

Requirements for any devices that
want to pre-install Google suite of
apps

VTS — Vendor Test
Suite [Bgv]

Tests if partner devices are compat-
ible with the hardware abstraction
layer

BTS — Build Test Suite
Security review for potentially
harmful behaviors in binaries or
the framework

STS — Security Test Suite Verification of the correct app of se-
curity patches

(CDD), which enumerates the modifications that can be made to the OS while ensuring com-

patibility with other devices. Vendors who wish to ship a modified version of the Android

OS can use the Compatibility Test Suite (CTS), a set of open-source tests to ensure that their

modified version remains compatible with AOSP [Bgc].

In addition to the Android compatibility program, Google created a certification program

for phone manufacturers, that not only ensures compatibility but also gives a number of secu-

rity guarantees. Internally, Google uses the CTS along with other test suites for this certificate,

as listed in Table 2.1. Unfortunately, not all of these test suites are open-source, and Google

does not provide technical details as to what is actually tested. Moreover, there is no test to

verify the level of privacy of devices. In reality, regardless of which tests are actually con-

ducted, these test suites are simply not enough to prevent privacy and security issues, as we

will show in detail in the rest of this thesis.

Devices made by vendors that are part of the Android Certified Partners program [Andb]

come pre-loaded with Google’s suite of apps (e.g., the Play Store and Youtube). Companies

that want to include the Google Play service without passing the certification themselves can

outsource the design of their product to a certified Original DesignManufacturer (ODM) [Cer].

Such devices can still be certified, as long as they pass the same test suite.

2.1.3 System Updates and FOTA Apps

Android systempartitions are read-only to prevent tampering by an outside party. TheAndroid

framework includes mechanisms to update the system and system apps, which are tradition-

ally handled by device vendors. However, many vendors have not been able to ship critical

19

CHAPTER 2. ANDROID

security patches and provide support to new Android releases at a reasonable pace, resulting

in a substantial number of outdated and unpatched Android versions [MN21]. Google has

recently put forward two initiatives to alleviate the problems for vendors to adapt their code

to AOSP and improve the distribution of updates. Project Treble [Andx], announced in 2017,

tries to help vendors to build their own Android version from a new AOSP release by separat-

ing customized vendor software (provided by silicon manufacturers and other vendor-specific

suppliers) from the core Android OS framework. This was implemented through a new ven-

dor interface and a Vendor Test Suite (VTS) [Bgv] to ensure forward compatibility. In addition,

Project Mainline [Andv], launched in 2019 on top of Project Treble, allows updating core OS

components through Google Play, similar to app updates. This allows Google to deliver critical

security updates directly on user devices without intervention from the manufacturer.

The main motivation behind these two projects is to push critical security updates and

other enhancements faster, without requiring the manufacturer to integrate the changes in

their code-base and ship an OTA update. These updates are implemented through a new file

format introduced in Android 10 called Android Pony EXpress (APEX) [Apea]. Its installation

involves Android’s package manager, as APEX packages share the same structure as APKs.

Once the package manager recognizes the file format, it makes the APEX manager apply the

update after a reboot [Apeb]. These mechanisms improve devices’ security by reducing the

time it takes to push an update. However, only phone vendors certified by Google [Mst; Rsa]

can implement this update mechanism at the time of this writing [Andv].

In practice, system updates are managed by a FOTA app, regardless of whether or not the

device makes use of projects Treble or Mainline. Such apps are highly privileged and play a

critical role in maintaining devices secured and updated. The Android operating system of-

fers standard mechanisms–available to OEMs–to implement their own FOTA apps but such

vendor-specific implementations could be a source of security and privacy issues due to poor

software engineering practices. We discuss more in detail issues related to FOTA apps in Chap-

ter 5 (page 47).

2.2 The Android Permission System

In this section, we present in depth the many features of the Android permissions system,

relying on both the official documentation and AOSP source code. The Android operating

system runs each app in a sandbox to prevent unwanted interaction between apps. Every app

runs with its own user ID (UID) and group ID (GID), and the kernel puts additional restrictions

in place to limit access to some system resources. Some of these resources are protected by

20

2.2. THE ANDROID PERMISSION SYSTEM

permissions (e.g., the GPS of the phone, or access to the user’s SMS). By default, apps do not

have access to permission-protected resources, in an effort to secure the device and protect the

user’s privacy [Gplb]. Apps must request permission from the user to be able to interact with

the protected resource.

2.2.1 Requesting a Permission

There are multiple ways for an app to request a permission. The most common one is by using

the <uses-permission> tag in the app’s manifest, along with the permission name [Gplb].

System apps can also use the <adopt-permissions> tag, along with the package name of the

app they wish to adopt the permissions from. Both apps must be signed by the same certificate.

This feature was introduced as a way to migrate data from one app to another when a new app

replaces an older app [Ado].

2.2.2 Permission Enforcement

Each Android app has a unique UID assigned to it at installation time. When the app runs,

its UID and GID are set to that UID. Permissions are mapped to (Linux) GIDs in Android. The

permission-to-GID mapping for built-in permissions is located in /etc/permission/, in the

platform.xml file. When an app is granted a permission, the permission’s GID is assigned

as a supplementary GID to the app process by the package manager. The kernel and system

services use the UID, GID, and supplementary GIDs of the app process to determine whether

it has access to standard system objects and functions, including regular files, devices, and

local sockets. Note that the system does not make a distinction between the app and the third-

party libraries it embeds. Therefore, any embedded SDK can take advantage of the permissions

granted to the app, and the resources said permissions protect.

Shared User IDs. Apps that are signed with the same key can also add the sharedUserId

attribute in their manifest, which will cause the system to run both apps under the same UID.

This maps to the same Linux UID at runtime, so the apps can run in the same process and ac-

cess the same system resources, even if only one of the apps requests the permission. Shared

UIDs are objects managed by the Android package manager, an OS component that provides

APIs to query installed packages, or permissions [Aosa]. Each shared UID has an associated

list of permissions, which is the union of the permissions requested by all currently installed

packages that have this UID. Hence, apps with the same shared UID inherit that superset of

permissions, allowing one app access to protected APIs for which it has not requested the

appropriate permission if another app with the same shared UID has already requested and

21

CHAPTER 2. ANDROID

obtained this permission. The package manager dynamically adds and removes permissions

from the shared UID object as packages are installed and uninstalled. This feature was dep-

recated in API level 29 and may be removed from future versions of Android, but is currently

still available for apps to use [Sha].

2.2.3 Protection Levels

Android permissions each have a protection level that characterizes the potential risk of the

permission. Each protection level consists of one mandatory base permission type associated

with zero or more flags [Andj]. We define these flags in details in Section 6.2.1. There are three

base permission types: normal, dangerous, and signature.

Normal permissions

These permissions protect resources that do not pose a significant risk to the user’s privacy or

the operation of other apps (e.g., INTERNET which is mandatory to get access to the Internet).

If an app requests one such permission, the system automatically grants access to it at install

time. The system does not prompt the user to grant normal permissions, and users cannot

revoke them.

Dangerous permissions

These permissions protect resources and types of personal data that could harm the user’s

privacy (e.g., the location) or could affect the user’s stored data or the operation of other apps.

Whenever an app requires access to a dangerous permission, the user has to explicitly grant

the permission to the app, either all at once at install time for devices running Android at a

version older than 6.0, or one by one via a system dialog otherwise. Until the user approves

the permission, the requesting app cannot use the associated functionality. Moreover, if the

device is running Android 6.0 or higher, the user can later withdraw its approval in the app’s

profile in the device’s settings.

Signature permissions

These permissions are the most restricted ones. To get access to such permissions, an app must

meet any one of the following conditions [Gra]: (i) share the same signing certificates as the

defining app; (ii) be signed with a certificate that was rotated from the defining app; or (iii) be

signed with a certificate that used to sign the defining app, and that is still trusted by it.

22

2.2. THE ANDROID PERMISSION SYSTEM

If the app meets any of these conditions with the system package, then the permission

will also be granted. An app can also, in some cases, use the system service associated with

the protected component. For instance, the permission BIND_VPN_SERVICE has a signature

protection level, but an app can still integrate a VPN by using the system’s VpnService [Vpn].

Some of the signature permission cannot be used by third-party apps (e.g., DUMP which allows

an app to get state dump information from system services [Dum]).

Internal permissions

The upcoming version of Android, Android 13, will see the arrival of a new protection level

called internal permissions [Coml]. Those permissions will work in a very similar way as

signature permissions but will be tightly tied to the notion of role in permissions [Comk].

Internal permissions will not be granted based on signatures but rather based on the roles of

the requesting and defining apps, thus allowing the creation of role-only permissions.

2.2.4 Permission Groups

Permission groups are categories to organize sets of related permissions according to the de-

vice’s features they refer to [Pera]. For example, the SMS group includes the READ_SMS and

the RECEIVE_SMS permissions. Permission requests are handled at the group level, even if each

single permission definition appears in the manifest.

In Android 6.0 (API level 23) and higher, when an app requests for the first time a dangerous

permission, the OS checks its group. If no permission from that group is already granted to the

app, the user is shown a dialog that shows the group name and description but not the specific

permission. If the app already has a dangerous permission in the same group, the request

is granted automatically. Note that the app must still explicitly request the permission. In

Android 5.1 (API level 22) and lower, the same process takes place at install time. For instance,

an app requesting the permission to read contacts (READ_CONTACTS) will show a dialog with

the contacts permission group instead of the permission. However, if approved by the user,

only the READ_CONTACTS permission will be granted to the app, not the other permissions from

the permission group.

2.2.5 Permission Trees

Permission trees are namespaces used to define the base name (prefix) for a tree of permis-

sions [Perc]. The app defining a permission tree owns all names that belong to the tree and

can add new permissions to that tree either statically in the manifest or programmatically by

23

CHAPTER 2. ANDROID

App 1
<permission

android:name="com.foo.MY PERM">

App 2

App 3
<uses-permission

android:name="com.foo.MY PERM>

P
r
o
t
e
c
t
e
d
s
e
r
v
ic
e

Figure 3: Example of an app defining a custom permission and protecting a service with it.
Only app3, which requests the permission, can interact with the service exposed by app1.

calling PackageManager.addPermission(), and remove them with removePermission(). A

permission added dynamically is added to the package database and, therefore, persists across

reboots until removed by the app.

2.2.6 Custom Permissions

One overlooked feature of Android’s permission model is its extensibility. By design, the An-

droid framework allows any app developer to share features implemented in their software

with other apps either explicitly using the android:exported attribute in the component def-

inition, or implicitly by setting one or more Intent-Filter. Apps can manage access to such

components in a “controlled” way by defining custom permissions [Gpla].

Apps can define custom permissions in their manifest file by using the <permission> tag

and protect a component with them by using the android:permission in the component

definition [Cusa]. Apps requesting access to custom permissions must also do so in their man-

ifest using the <uses-permission>, just like they do for regular AOSP permissions. Once

an app requests access to a custom permission, it can interact with the protected component,

for instance by sending an intent [Int] or by instantiating the component directly (e.g., for

a protected activity). By default, access to custom permissions is regulated by the Android

package manager, but the app defining them can implement further access controls to only

grant access to authorized apps, regardless of the protection level of the permission, by call-

ing checkPermission, enforcePermission, or one of their variants [Andt]. Apps can also

define custom permissions groups by using the <permission-group> tag in their manifest by

specifying a name and a description, among other fields [Perb]. A permission can then use its

group with the permissionGroup attribute in its definition.

Figure 3 shows an example of communication between apps regulated by a custom per-

missions. In this example, app1 defines a permission called com.foo. MY_PERM to protect a

service. At first, app2 tries to interact with the protected service by sending an intent but does

not hold the required permission: the intent is rejected. App3 on the other hand does hold the

com.foo.MY_PERM: when it sends an intent to the protected service, the intent is accepted.

24

2.2. THE ANDROID PERMISSION SYSTEM

At the framework level, there are two types of custom permission enforcement. Static per-

mission enforcement applies when an app (the caller) interacts with a component defined by

another app (the callee) and that component has defined which permissions the caller pro-

cess must possess. In this case, the ActivityManagerService resolves the calling intent and

determines the permission associated with the target component. The package manager will

then check if the caller does hold that permission. Dynamic permission enforcement occurs

when a component does not delegate permission checks to the system but instead does it it-

self programmatically, using a number of helper methods in the Context class, most notably

checkPermission or enforcePermission.

Naming conventions for custom permissions. The Android operating system does not

impose any restrictions on custom permission names or the features and data they can enable.

However, Google recommends using the app’s package name as the prefix for the custom per-

missions that it defines (e.g., an app with the package name com.foo should name their cus-

tom permissions com.foo.MY_PERM), which itself should use a “reverse-domain-style name”,

to ensure package and permission name uniqueness [Gpla]. Google also recommends adding a

description of the purpose of their permissions to “explain the permission to the user” [Andab]

when defined in the Android Manifest file. However, no active policy enforcement seems to

be applied in the case of pre-installed apps, as we show in Chapter 5. Note that embedded

Software Development Kits (SDK) embedded on Android apps may also define custom permis-

sions with the collaboration of the developer, in which case the permissions they request or

define will be merged in the manifest of the host app [Mer] (e.g., an SDK from sdk.com could

define the com.sdk.MY_PERM permission). The presence of SDK-defined custom permissions

adds another layer of complexity to their analysis. We will investigate in depth such custom

permissions later in this thesis, first from an attribution perspective (Chapter 5, page 47), then

studying their privacy and security implications (Chapter 7, page 93).

25

Chapter 3

Related Work

“Science is made up of so many things that appear
obvious after they are explained”

— Frank Herbert, Dune (1965)

A
ndroid, being the most used mobile operating system in existence, has attracted

the attention of the research community. Since its first release, there has been a

significant number of studies, both theoretical and practical, that measure, ana-

lyze, and break down various aspects of Android. In this chapter, we present previous studies

of relevance to the contributions we make in this thesis. We first discuss pre-installed apps

and supply chain issues (§3.1). Then, we present the seminal papers that examine the Android

permissions system (§3.2), a domain that has long been the focus of the research community.

We conclude this chapter with a presentation of state-of-the-art tools in the area of Android

app analysis techniques (§3.3).

3.1 Studying and Characterizing the Android Supply Chain

The research community has spent some efforts on quantifying the effects of OEMs customiza-

tion on the security and privacy guarantees of the OS. The initial main focus of previous

work was on image customization [Gra+12; Wu+13; ZSL14; Aaf+15; Zho+14; PWL20a], while

a few other works focused on discovering vulnerabilities present in pre-loaded apps them-

selves [Tia+18; Wu+19]. We note that since we published our first paper on pre-installed

apps [Gam+20], there has been a renewed interest on studying the privacy and security impli-

cations of such apps [Els+20] and vendor customizations [Ji+21; Pos+21; Lee+21; Lei21; LPL21;

Lei22]

27

CHAPTER 3. RELATED WORK

3.1.1 Android Images Customization

Grace et al. investigated the quality of the implementation of the permission system in eight

different devices [Gra+12]. Specifically, the authors focused on what they called “capabil-

ity leaks”, i.e., situations where an untrusted app (e.g., user installed) can leverage unpro-

tected components exposed by privileged pre-installed apps to access permission-protected

APIs without actually holding said permission. They develop WoodPecker, a system to detect

such cases by building the app’s control flow graph and looking for possible paths in that graph

from the unprotected components. Using their system on 8 popular devices at the time, they

uncovered capability leaks in all of them.

Zheng et al. studied the presence of malware in Android firmware images [ZSL14]. The

authors presented DroidRay, a system that relies on both static and dynamic analysis to eval-

uate the security of a given firmware image. Specifically, they rely on signature analysis and

Virus Total [Vir] to detect malware in pre-installed apps, and privilege escalation vulnerabili-

ties at the framework level. They use DroidRay on 250 Android firmware images, containing

24k pre-installed apps, and discovered that 8% of said images contain pre-installed malware

samples. More worrying, they found that virtually all of the images they analyzed (99.6%)

were vulnerable to at least one version of the MasterKey bug [Jayb; Jaya; Jayc].

Among the papers that are part of the new effort to investigate vendor customizations, Ji

et al. presented the first analysis of init routines in Android firmware images [Ji+21]. Init on

Android (and Linux) is the process that initializes the user space and can execute custom rou-

tines defined by stakeholders of the supply chain. Such custom routines can also be triggered

by pre-installed apps. The authors presented DefInit, a tool to detect and analyze apps that

expose init routines, and found 89 instances of insufficiently protected custom routines. The

authors show that some of these routines could be exploited by other apps on the device, and

could therefore lead to privilege escalation vulnerabilities.

Possemato et al. focused onOEMs customization of Android images and presented a frame-

work to measure their level of compliance with regard to the requirements set out by Google

in the CDD [Pos+21]. Specifically, the authors do not focus on pre-installed apps themselves,

but rather look at modifications of security-enhanced Linux (SELinux) policies, init scripts,

and assess the security of the kernel by extracting its version and hardening options. The au-

thors then use their framework on 2,907 Android images they crawled from manufacturers’

websites. The authors have found that about 20% of the images they analyzed break at least

one of the rules of the CDD, including images created for Google-certified devices, which calls

into question the efficiency of the certification itself.

28

3.1. STUDYING AND CHARACTERIZING THE ANDROID SUPPLY CHAIN

3.1.2 Privacy and Security of Pre-installed Apps

Tian et al. investigated the use of custom AT commands in modern Android devices across

11 vendors [Tia+18]. They found that some of these commands enable very powerful func-

tionalities, including unlocking the screen, performing screen touch events, or even rewriting

the device firmware, which represents a broad attack surface, even for modern Android de-

vices. The authors found that such commands could be issued using the USB connection of

the device. However, the authors did not discuss whether AT commands could also be issued

by apps installed on the device (either system or user-installed apps), which would make the

attack surface even broader.

Elsabagh et al. presented FirmScope, a static analysis tool that aims at discovering privilege

escalation vulnerabilities in Android firmware images [Els+20]. Their tool extracts APKs from

an image and then applies taint analysis to these apps to detect the hidden features we high-

lighted in our paper on pre-installed Android apps [Gam+20]. The authors managed to find 850

unique privilege escalation vulnerabilities by analyzing over 330K apps. In some cases, such

vulnerabilities are caused by components exposed by pre-installed apps, which are not prop-

erly protected using a permission. Those vulnerabilities can be therefore triggered by other

apps installed on the device. Google and affected phone manufacturers recognized the severity

of such vulnerabilities, and the authors received 147 CVEs after responsible disclosure of their

results. Unfortunately, they did not release the source code of their tool, making it impossible

to reproduce their work or to build upon it.

Lau et al. released Uraniborg, a framework to quantify the privacy and security risks posed

by the apps pre-loaded on a phone [Lau+20]. They take into account the permissions requested

by or pre-granted to pre-loaded apps, or the number of apps that are signed by the same cer-

tificate as the platform. However, the authors fail to take into account the role of pre-loaded

apps. For instance, any app that requests the INSTALL_PACKAGES permission will increase the

risk score significantly; however, it is perfectly normal for a device to have at least one app able

to install other apps (e.g., the Google Play Store), which will increase the score even though

that behavior is expected.

Finally, recent papers discuss the data collection that occurs by default on Android de-

vices. Leith et al. [Lei21] compares the network traffic of a stock Pixel device sent by default

and compares it to the traffic sent by an iPhone under the same conditions. They find unique,

non-resettable user IDs sent over the wire, despite explicitly opting out of any data collec-

tion. In another paper, Liu et al. [LPL21] conduct a similar analysis, this time comparing the

telemetry sent by default by six variants of the Android OS, from major phone manufactur-

29

CHAPTER 3. RELATED WORK

ers (e.g., Samsung, Xiaomi) but also known user-developed images (e.g., LineageOS). They find

substantial sharing of PII even when the device stays in an idle state, not only back to the man-

ufacturer but also to third parties. Finally, Leith et al. [Lei22] conduct a study of the default

Google message and dialer app that comes pre-installed on handsets from various manufac-

turers. The data collected could theoretically allow for linking devices after a phone call, and

otherwise uniquely identify users and the relationship between said users.

Overall, these papers confirm some of the findings of this thesis: in Chapter 5, we present

evidence of pre-installed apps contacting domains associated with well-known advertising and

tracking services. However, the results of these papers are limited in scale, due to the difficulty

to conduct dynamic analysis of system apps in an emulated environment. For their experi-

ments, the authors instrumented real devices, but this prevented them from expanding their

dataset to have a more exhaustive vision of the issues at hand. This also reflects the difficulty

of using dynamic analysis techniques to conduct privacy analysis of pre-install apps, as we

will further discuss in the next section.

3.2 The Android Permission System

The Android permission system has long been the focus of the academic community. There

have been significant efforts to study the use and abuse of AOSP permissions [SC13; Au+12b].

Prior studies analyzed over-privileged apps [Fel+11b; VCC11; Chi+17; Leo+12; Ped+19] and as-

sessed the efficiency and transparency of Android’s permissionmodel to empower users [Fel+12;

FGW11; KGC13; Wij+15]. Others identified vulnerabilities in the permission system that al-

lowed developers to get access to protected APIs, either by exploiting weaknesses of the per-

mission system [NKZ10; Fel+11c; Bug+11; Gib+12; SBM15; Sad+18] or by exploiting side and

covert channels to circumvent it [Mar+12; AHIN14; Des14; MBN14; Mic+15; SXA16; Spr+17;

BNN17].

3.2.1 Characterization of the Permission System

In 2011, Felt et al. presented Stowaway, the first tool to determine if all permissions requested

by a given app are actually used, based on dynamic analysis [Fel+11b]. The authors ran Stow-

away on 900 Android apps and found that around 35% of them asked for unnecessary permis-

sions (i.e., they were not used on the app’s code). They showed that often over-privilege is due

to developer errors (e.g., legacy code, or copied and pasted code). Au et al. used a different ap-

proach and introduce PScout, a static analysis tool to infer the specification of the permission

system from Android 2.2 to Android 4 [Au+12b]. Their main objective was to determine if,

30

3.2. THE ANDROID PERMISSION SYSTEM

given the large number of permissions offered by the OS (79 at the time of publication), there

was any overlap in the set of protected APIs for a given pair of permissions, and found only

one such pair. The authors also noted the presence of undocumented APIs and permissions, as

we highlight in Chapter 6 (page 83), but showed that such APIs are rarely used by apps.

Backes et al. built a static runtime model of the Android permission framework [Bac+16]

to (1) build a more complete and more recent mapping of API calls to permissions, and (2)

to study permission locality (i.e., whether permissions are enforced only by one particular

service). The authors showed that 20% of the analyzed permissions are checked by more than

one single class, making enforcement of permissions a more complex task.

Some studies focus on how efficient the Android permission system is at conveying infor-

mation to the user about the permissions their apps use. Fealt et al. analyzed how effective

install time permissions are atwarning users about the potential risks of Android apps [Fel+12].

To do so, they relied on an Internet survey and a laboratory experiment in which they monitor

users. They showed that below 20% of users paid attention to permissions during app instal-

lation, and only 24% of users showed a clear understanding of permissions. However, most

participants claimed that they had decided not to install an app based on its permissions at

least once. Wijesekera et al. performed a 36-person study on how often apps accessed pro-

tected information that the users were not expecting [Wij+15]. To do so, they instrumented

the Android OS to learn when protected resources are accessed during the use of an app and,

through exit interviews, found that 80% of participants would have liked to stop access to a

given piece of data at least once. In general, users noted that they would have liked to stop a

third of all data access.

Finally, Zhauniarovich et al. reviewed the implementation and temporal evolution of the

Android permission system [ZG16]. This paper was published in 2016 after Android 6.0 was

released, and therefore after the introduction of runtime permissions in Android, which was a

major modification to the way permissions are enforced in Android. This was the first paper

to give a complete overview of the permission and protection level flags, and the security

and privacy implications. The permission system has however significantly evolved since the

publication of this paper: we give an updated view of the permission system and its evolution

ourselves in Chapter 6 (page 83).

3.2.2 Security and Privacy

Android permissions have been typically used as a proxy by the research community. To infer

the privacy and security risks of apps. However, this method presents some limitations, as the

31

CHAPTER 3. RELATED WORK

mere fact that an app requests a permission does not mean it will access the protected resource

during its execution.

Johnson et al. focused on over-privileged apps, i.e., apps that request permissions that

they do not make use of in their code. They analyzed over 140k apps for cases of over privi-

lege [Joh+12]. The authors showed that around 54% of apps requested extra permissions. In-

terestingly, they also showed that 50% of these apps were also missing permissions that would

be needed to make use of some of the APIs present in their code, hinting at developer errors

rather than maliciousness. The authors also released a mapping between APIs and the per-

missions protecting them. To tackle this issue, Google introduced in 2019 a new system to the

Google Play Store in which developers receive a warning if their app is requesting a permis-

sion that is often not requested by similar apps. Peddinti et al. reported that this approach is

relatively useful, as 59% of the apps that received a warning removed the permission [Ped+19].

However, it suffers from serious limitations. For instance, if the majority of calculator apps

request the ACCESS_FINE_LOCATION permission, then the system will assume that permission

is needed for calculator apps when it clearly is not.

Sarma et al. proposed a system inwhich users are informed of whether the risk of installing

an app is greater than its benefits by taking into account the permissions requested by the app,

the app category, and the permissions requested by apps in the same category [Sar+12]. They

tested their approach using apps from two datasets, one comprising 121 malware samples

and another one with around 158k apps gathered from the marketplace. Similarly, Jeon et

al. remarked that, while there is a large number of fine-grained permissions in Android, a

permission may provide larger access than actually needed by an app [Jeo+12]. The authors

therefore created a taxonomy of four major permission groups that encompass all existing

permissions (e.g., sensors permissions, which include for instance ACCESS_FINE_LOCATION or

CAMERA), along with strategies to infer new fine-grained permissions variants for each group,

and therefore increase user security by only giving an app access to the APIs it needs. The

authors also released several tools to implement their strategy, without having to change the

Android OS.

Developers can make a conscious choice to request more permissions when releasing a

new version of their apps but might want to avoid asking users for extra permissions. In such

cases, they can make use of permissions groups’ behavior. Calciati et al. investigated such

permissions groups, i.e., AOSP permissions that are grouped by the OS since they relate to the

same features (e.g., RECEIVE_SMS and READ_SMS, both in the SMS group) [Cal+20]. If an app is

granted one such permission, and the app requests more permissions from the same group in

32

3.2. THE ANDROID PERMISSION SYSTEM

an update, the OS will automatically and silently grant all new requested permissions that are

in the same group as already granted permissions. The authors investigated the prevalence

and privacy risks of such a mechanism.

Another issue might be caused by embedded third-party libraries, which can leverage any

permission requested to their host app. Liu et al. presented Pedal, a system to prevent third-

party libraries to take advantage of the permissions granted to host app [Liu+15]. This system

separates code from Third-Party Library (TPLs) and the host app, and blocks calls to protected

APIs from the libraries by default. However, their detection and separation system relies on

machine learning algorithms, which sometimes yield false positives and false negatives, which

can negatively impact user experience.

Third-party libraries were also the focus of a more recent study by Feal et al. [Fea+21].

Specifically, the authors investigate the privacy risks due to piggybacking of privilege by em-

bedded SDKs. Any third-party library embedded in an app inherits all the permissions that

were granted to the host app. The authors evaluate the efficiency of SDK detection and au-

diting techniques and find that most tools do not provide accurate results in general, which

highlights the need for more robust and accurate methods for SDK detection and analysis.

Finally, some developers try to simply bypass the permission system. In their paper, Rear-

don et al. focused on circumvention of the permission system using covert- or side-channels

(e.g., getting the MAC address of the device without holding the otherwise required permis-

sion by calling ioctl) [Rea+19]. The authors ran 88,000 apps in an instrumented environment,

where they log system calls at the kernel level, then exploited these logs to find evidence of

circumvention of the permission system. After identifying circumvention techniques in an

app, they statically checked the rest of their dataset of apps to discover other apps with the

capability to use said technique.

3.2.3 Custom Permissions

Previous studies mostly focused on AOSP permissions, and custom permissions have been

largely overlooked in the literature, with some notable exceptions.

Tuncay et al. highlighted several attacks on the official permission system by leverag-

ing custom permissions [Tun+18]. They described a custom permission upgrade attack that

exploits the permission groups to be able to enable any dangerous permission without user

awareness and approval. They also discussed a confused deputy attack that exploits the lack of

enforcement on naming conventions to access signature custom permissions with an app that

is not signed with the same certificate as the defining app. Both attacks were acknowledged

33

CHAPTER 3. RELATED WORK

and fixed by Google. However, the naming issue remains as there is still a lack of enforcement

of naming conventions.

Bagheri et al. [Bag+15; Bag+18] showed the issues inherent to Android’s permission model

by creating a formal model of Android’s permission protocol for automatically analyzing and

verifying it. The authors showed that the lack of naming conventions for custom permissions

allowed an attacker app to get access to a component protected by a custom permission in the

victim app (in a way akin to the confused deputy attack described by Tuncay et al.). They also

analyzed a subset of real-world Android apps to confirm their findings.

Finally, Li et al. showed how custom permissions can be used to gain access to APIs other-

wise protected by AOSP permissions [Li+21]. The authors develop CuPerFuzzer, an automatic

fuzzing tool that they use against the Android OS. This tool allowed them to discover four de-

sign shortcomings of the permissions system, which were reported to Google and fixed by the

Android security team in Android 10. However, some of these attacks need user interaction

multiple times to be carried out, which renders them less threatening in practice.

3.3 Android App Analysis Techniques

A decade of research in Android yielded numerous different tools and frameworks to ana-

lyze apps, either using static analysis such as CHEX [Lu+12], FlowDroid [Arz+14], or Aman-

droid [Wei+14] among others [Gib+12; Li+15; FCF09; Kim+12; Qia+15; Gor+15; YY12; Li+14;

Kli+14]. Some other tools use dynamic analysis instead [Bug+12; Qia+14; He+19; Tam+15],

TaintDroid [Enc+14] and DroidScope [YY12] in particular, while some use a combination of

both static and dynamic analysis, such SMV-Hunter [GK14] or QUIRE [Die+11]. Other stud-

ies focus on Dalvik bytecode analysis [VRH98; JMF12; Bar+12; Wog+14], or present tools that

are created for specific kinds of analysis, such as intents or other Inter-Component Commu-

nication (ICC) mechanisms [SR14; Jin+16; Bha+17; KZM17], or native code usage in Android

apps [Wei+18; Sto18]. In this section, we focus only on flow analysis tools. Such tools are

typically used for security and privacy analysis of Android apps, as they allow researchers to

track pieces of data, either statically on during the execution of the app, and thus are suitable

for privacy analysis [You+15; Avd+15].

3.3.1 Static Analysis

Static analysis is a popular choice of technique for researchers. A systematic literature review

from 2017 found 124 papers using static analysis techniques alone [Li+17]. Another similar

survey from 2021 found as many as 261 [Aut+21].

34

3.3. ANDROID APP ANALYSIS TECHNIQUES

FlowDroid is a taint analysis tool that is context-, flow-, field-, object-sensitive, and life

cycle-aware [Arz+14]. It models the life cycle of Android components, which rely on implicit

method calls and asynchronous events (e.g., the user can choose to go back to the previous

activity at any point during the execution). FlowDroid relies on a list of sources (i.e., methods

that return sensitive information) and sinks (i.e., methods that leak data out of the app) to

conduct its analysis. However, FlowDroid suffers from limitations, the least of which being its

computational costs that can be needed to analyze some large Android apps. Previous studies

reported needing as much as 730GB of RAM and a 64 CPU server for 24 hours to analyze a

single app, evenwhen configuring FlowDroid in such away that would sacrifice some accuracy

for better performance, which makes FlowDroid unsuitable for large scale studies [Avd+15].

Anothermajor drawback is its inability to handle ICC or Inter-App Communication (IAC) since

FlowDroid only conducts inter-procedural data flow analysis. This makes FlowDroid poorly

adapted to study custom permissions which rely heavily on such mechanisms.

IccTA tries to overcome this last limitation [Li+15]. In their paper, the authors modified the

intermediate representation of the code to add links to account for inter-component messages.

They then use FlowDroid to conduct the actual taint analysis, but because of this, they also

inherit the performance issues that plague FlowDroid. Amandroid (now renamed Argus-SAF)

was developed around the same time as IccTA [Wei+14]. Amandroid is a framework for secu-

rity vetting of Android apps. As IccTA, it can conduct taint analysis even between components

or between apps.

3.3.2 Dynamic Analysis

TaintDroid is a dynamic taint analysis tool built on top of the Android OS [Enc+14]. It allows

for tracking of data as the app runs and is therefore not susceptible to the limitations of static

analysis tools, such as obfuscation, dynamically loaded classes, or the use of the Java reflection

API [Ref]. However, using TaintDroid requires flashing a custom-built image on a device, and

the last version supported is Android 4.3, released in 2013, which means it is unable to take

into account subsequent developments in the Android OS (e.g., runtime permissions, which

were introduced in Android 6). Moreover, it makes it difficult at best to use for the analysis

of pre-installed apps, as such apps might rely on modification of the Android OS added by a

stakeholder of the supply chain. Suchmodifications would not be present on TaintDroid which

is built on top of code from AOSP.

NDroid is another taint analysis framework based on dynamic analysis [Qia+14]. NDroid

focuses on another part of the Android stack: the JNI. Using the JNI, an app can call code from a

35

CHAPTER 3. RELATED WORK

shared library either located in its assets or, in the case of system apps in particular, pre-loaded

on the device by a stakeholder of the supply chain. Other frameworks, either based on static or

dynamic analysis, can miss leaks due to such calls, as they only limit themselves to analyzing

the app’s bytecode. NDroid adds a module to track information flows that go through the

JNI engine and relies on TaintDroid for taint analysis. This means that NDroid inherits the

limitations of TaintDroid that we detailed in the previous paragraph. In 2018, the authors of

the original NDroid paper released an updated version, along with an updated version of the

code that supports up to Android 7 [Xue+18].

While dynamic analysis is useful to report on the actual behavior of apps, as opposed to

potential behavior in the case of static analysis, a major drawback is the exercising of the app.

A dynamic analysis tool can only analyze the code that is being run (e.g., the code associated

with the activity currently displayed); it is therefore needed to generate events that allow for

a full exploration of the app, or the analysis could miss some potentially dangerous behaviors.

There are different approaches to event generation, from random input (i.e., clicking at ran-

dom coordinates on the screen) [Andai], or model-based, in which the generator first build a

representation of the UI to find interesting elements to test [MTN13; Ama+15; Su+17; SQH17].

3.3.3 Limitations for the Analysis of System Apps

System apps bring another set of difficulties for static or dynamic analysis tools. Such apps

are different by nature: while the developers of apps available on app stores cannot make any

assumption as to the environment their app will run on (e.g., presence of a specific library, or

Android version), system apps developers can. They can thereforemake use of specific features

of the OS, or code from a shared object loaded alongside their app, or even split their app into

multiple, smaller ones that will communicate with one another, which can be facilitated by the

use of the sharedUserId attribute. Such behaviors can make like difficult for researchers, or

even render some state-of-the-art tools unable to spot any malicious behaviors.

Another specificity of system apps is the use of external Optimized Dalvik Executable File

(ODEX) files. Android APK usually contains at least one classes.dex file, which contains

the Java bytecode converted into Smali, which uses the Dalvik Executable File (DEX) byte-

code. However, system apps can instead use an external ODEX file stored alongside it on the

filesystem, which can be loaded ahead of time by the OS, leading to performance gains (see

Chapter 2.1, page 15, for details). This also can hinder static or dynamic analysis tools. Such

tools expect the DEX file(s) to be present in the app; in the case of external ODEX files, such

tools will simply fail to analyze the app. As part of our work on FOTA apps [Blá+21], we cre-

36

3.3. ANDROID APP ANALYSIS TECHNIQUES

ated and released a tool, Dextripador [Dex], that can convert back an ODEX file into a DEX,

that can then be loaded alongside the APK, thus allowing for static or dynamic analysis.

37

II

On the Impact of
Customization on Users’
Privacy and Security

Chapter 4

Collecting Pre-installed Apps at Scale

“Lex Murphy: It’s a UNIX system, I know this!”

— Steven Spielberg, Jurassic Park (1993)

O
btaining pre-installed apps and other software artifacts (e.g., certificates in-

stalled in the system root store, or shared libraries) at scale is challenging. Such

files are usually not publicly available on app stores, which might be missing apps

potentially installed by other elements in the supply chain such as resellers, or by FOTA com-

ponents offering third-party installations similar to Pay-per-Install (PPI) programs. They must

therefore be collected from the firmware directly.

The majority of previous studies tackle this problem by crawling firmware images from

manufacturers’ websites or specialized websites [Wu+13; ZSL14; Aaf+15; Zho+14; Tia+18],

or by extracting them from real devices in a lab environment [Gra+12]. However, these ap-

proaches suffer from serious limitations. First, using real devices has obvious scaling issues, as

purchasing enough mobile handset models, and their many variations, to cover a significant

portion of the market is unfeasible. Second, crawled firmware images would only contain a

subset of pre-loaded apps and would miss most, if not all, of system apps installed afterward by

either other actors of the supply chain or through FOTA components who might install extra

apps automatically at first boot.1 We decided to use a different approach and crowdsource the

collection of pre-installed software using a purpose-built app: Firmware Scanner. In the re-

mainder of this chapter, we first explain the design of our app (§4.1), and present statistics from

the dataset we collected (§4.2). We conclude this chapter by discussing the ethical implications

of our data collection (§4.3).
1This mechanism is otherwise called out-of-the-box experience (OOBE).

41

CHAPTER 4. COLLECTING PRE-INSTALLED APPS AT SCALE

Table 4.1: List of data collected by Firmware Scanner. A * in a location denote a subfolder, i.e.,
a potential location in all existing system partitions

Data Possible location(s)

Pre-installed apps */app , */priv-app
ODEX files */app , */priv-app (Stored alongside APKs files)
Native libraries */lib , */lib-64
Root certificates /etc/security/cacerts/

Permission allowlists /etc/permissions/*.xml, /etc/default-permissions/*.xml,
/etc/sysconfig/*.xml

Framework APK

/system/app/framework-res.apk ,
/system/priv-app/framework-res.apk ,
/data/system-framework/framework-res.apk ,
/system/vendor/overlay/framework-res.apk ,
/system/vendor/overlay-subdir/framework-res.apk ,
/system/vendor/overlay-subdir/pg/framework-res.apk ,
/system/product/overlay/framework-res.apk ,
/vendor/overlay/framework-res.apk ,
/vendor/overlay/PG/android-framework-runtime-
resource-overlay.apk ,
/data/resource-cache/system@vendor@overlay@framework-
res.apk@idmap ,
/product/overlay/framework-res.apk

4.1 Firmware Scanner

Publicly available on Google Play [Sca], Firmware Scanner is a purpose-built Android app

to extract pre-installed apps and other binaries. It scans the following system partitions:

/system, /odm, /oem, /vendor, and /product. These partitions are among the official ones and

were chosen as they can potentially contain system apps [Off]. Firmware Scanner also collect

any native libraries, ODEX files, and root certificates that come pre-installed in these parti-

tions. In addition, Firmware Scanner scan and collect files from /etc/default-permissions/,

/etc/permissions/, and /etc/sysconfig/: these folders contain lists of pre-granted per-

missions. Finally, the app tries to collect as well the framework app. Note that the actual

location of these files might differ, depending on the level of customization added by the ven-

dor. Firmware Scanner only checks the default locations. Table 4.1 lists the different pieces of

data collected by Firmware Scanner.

4.1.1 Workflow

Figure 4 summarizes the workflow of Firmware Scanner and Figures 5a to 5e show screenshots

of the app in action. Firmware Scanner starts by asking the user for their consent (Figure 5a).

42

4.1. FIRMWARE SCANNER

No data is uploaded before the app receives explicit consent from the user. We discuss more

in depth the ethical concerns of our data collection in Section 4.3.

Figure 4: Workflow of Firmware Scanner’s operating

After obtaining user consent, Firmware Scanner scans the system partitions and computes

the MD5 hash of each file (Figure 5b). It then sends the list of hashes to our server, which will

compare it against our metadata database, and return only the hashes of files to upload. The

goal of this server-side comparison is twofold: first, to reduce the upload time, and therefore

reduce the risk of users canceling the operation; and second, to reduce the total size of the

data that has to be uploaded. In addition, Firmware Scanner only uploads files over a Wi-Fi

connection to avoid affecting the user’s data plan.

At this stage, Firmware Scanner will also upload some metadata about the device, specif-

ically: the device’s manufacturer name, its model and name, its build fingerprint, the version

of Android it is running, its current timezone, and the MCC-MNC codes and country code of

its SIM card (if any). We use this data to help us attribute pre-installed binaries back to a stake-

holder of the supply chain. For instance, we can conclude with reasonable confidence that an

app signed by a certificate mentioning Samsung in the subject is indeed coming from Samsung

if the device was manufactured by Samsung.

Firmware Scanner also tries to detect if the device it is running on is rooted. On a rooted

device, the user can remount a system partition as read-write and then install apps on it. There-

fore, on a rooted device, we cannot be certain that an app located on a system partition was

not manually installed by the user, instead of by an actor of the supply chain of the device.

We consider that a given device is rooted according to two signals. First, after Firmware Scan-

ner has finished the upload of pre-installed binaries, it asks the user directly if the handset

is rooted according to their understanding (note that the user may choose not to answer the

question). As a complement, we use the library RootBeer [Roob] to programmatically check if

43

CHAPTER 4. COLLECTING PRE-INSTALLED APPS AT SCALE

the device is rooted or not. If any of these sources indicate that the device is potentially rooted,

we consider it as such. Firmware Scanner also asks some questions to the user, which we use

as a complement to the metadata automatically gathered (Figure 5c).

(a) Asking for
user consent

(b) Computing
hashes on device

(c) User questions
about their device

(d) Listing of files
on the device

(e) Example of
app details

Figure 5: Screenshots from Firmware Scanner in operation on a device

Finally, the app uploads those files to the server for storage and later analysis. Firmware

Scanner displays the number of files that were detected on the device, along with the list of

system apps (Figure 5d). The user then has the possibility of clicking on any app to get more

details, such as the information contained in the certificate used to sign the app and the list of

defined and requested permissions (Figure 5e).

4.2 Data Collected

Table 4.2: Dataset collected by Firmware Scanner as of the 6th of May, 2022

All devices Non-rooted only

N
um

be
r

of
…

apps 1,309,968 983,875
users 120,132 91,509
vendors 1,050 651
devices 33,915 26,142

Pe
rc
en

ta
ge

of
us

er
si

n
…

Europe 23.8% 24.3%
Asia 40.1% 38.8%
Americas 25.3% 26.6%
Africa 8% 8.3%
Others 2.7% 2%

The initial version of Firmware Scanner was released in July 2018 on Google Play. At the

time of this writing, the data collection is still ongoing. Table 4.2 summarizes our dataset as of

the 11th of February, 2022. Our dataset covers as many as 26,142 unique device models from 651

phone manufacturers (excluding rooted devices). In addition, Figure 6 shows the percentage

44

4.3. ETHICAL ASPECTS

of users of Firmware Scanner per country (this figure was generated using the country code of

the SIM card of the device if such a card is present). This gives us an unprecedented view into

the ecosystem of pre-installed Android apps, which would not have been possible to achieve

by other means. Indeed, our approach allows us to collect apps that might only be available

in certain regions of the world, or certain countries, which might in turn allow us to uncover

more regional stakeholders of the supply chain of Android devices.

Figure 6: Percentage of users per country as of the 11th of February, 2022

4.3 Ethical Aspects

Our data collection depends on real users who organically installed Firmware Scanner on their

devices. Therefore, we follow the principles of informed consent [DK12] and we avoid the

collection of any personal or sensitive data. We sought the approval of our institutional Ethics

Board and Data Protection Officer (DPO) before starting the data collection. The app also

provides extensive privacy policies in their Google Play profile.

The app collects somemetadata about the device to attribute observations tomanufacturers

(e.g., its model and fingerprint) along with some data about the pre-installed apps (extracted

from the Package Manager), MNO, and user (the timezone, and the MCC and MNC codes from

their SIM card, if available). To minimize the risks for users, we generate a unique UID for

each device to identify duplicates and updated firmware versions for a given device.

45

Chapter 5

Pre-installed Apps in Android Devices

“The electric things have their life too. Paltry as those lives are”

— Philip K. Dick, Do Androids Dream of Electric Sheep? (1968)

T
he open source nature of the Android OS makes it possible for manufacturers to

ship custom versions of the OS along with a set of pre-installed apps, often for

product differentiation. Yet, the landscape of pre-installed software in Android has

largely remained unexplored, particularly in terms of the security and privacy implications of

such customizations, as we highlight in Chapter 3 (page 27). In this chapter, we present the first

large-scale study of pre-installed software on Android devices frommore than 200 vendors, re-

lying on data collect with Firmware Scanner. We answer questions related to the stakeholders

involved in the supply chain, from device manufacturers and mobile network operators to

third-party organizations like advertising and tracking services, and social network platforms

(§5.2). We then do a preliminary analysis of custom permissions in pre-installed apps (§5.3),

attributing them to responsible parties, and study the behavior of these apps using both static

and dynamic analysis (§5.4). Finally, we take a deep dive on a specific category of pre-installed

apps to highlight the risks that come with add extra system apps: apps with the ability to read

the full, unfiltered system logs (5.5).

5.1 Data Sources

In this chapter, we use a subset of the data collected by Firmware Scanner (see Chapter 4,

page 41 for details) which contains pre-installed software from 1,742 device models. Table 5.1

summarizes the dataset we consider. This dataset contains 424,584 unique files (based on their

47

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

Vendor Country Certified
partner

Device
Fingerprints

Users Files
(med.)

Apps
(med.)

Libs
(med.)

DEX
(med.)

Root certs
(med.)

Files
(total)

Apps
(total)

Samsung South Korea Yes 441 924 868 136 556 83 150 260,187 29,466
Huawei China Yes 343 716 1,084 68 766 96 146 150,405 12,401
LGE South Korea Yes 74 154 675 84 385 89 150 58,273 3,596
Alps Mobile China No 65 136 632 56 385 46 148 29,288 2,883
Motorola US/China Yes 50 110 801 127 454 62 151 28,291 2,158
Xiaomi China Yes 49 104 1,506 98 1,114 92 156 61,004 2,876
Lenovo China Yes 45 92 602 48 385 46 150 30,132 2,050
Asus Taiwan Yes 43 88 689 92 423 60 156 35,237 2,165
ZTE China Yes 36 80 943 79 580 84 161 27,418 1,702
Sony Japan Yes 32 68 1,062 180 723 62 148 31,687 2,757

Total
(214 vendors) — 22% 1,742 2,748 424,584 82,501

Table 5.1: General statistics for the top-10 vendors in our dataset.

MD5 hash) as shown in Figure 7 for selected vendors. For each device we plot three dots, one

for each type of file, while the shape indicates the major Android version that the device is run-

ning.1 The number of pre-installed files varies greatly from one vendor to another. Although

it is not surprising to see a large amount of drivers and native libraries due to hardware differ-

ences, some vendors embed hundreds of extra apps compared to other manufacturers running

the same Android version. For instance, some Alps Mobile and LGE devices come with less

than 50 pre-installed apps, while we found multiple Samsung devices that ship more than 350.

The trend is the same for libraries. The number of root certificates stays similar across vendors

for the same version of Android (the number of root certificates varies from an Android ver-

sion to another), with some notable exceptions. For the rest of our study, we focus on 82,501

Android apps present in this dataset, leaving the analysis of root certificates and libraries for

future work.

We complement this dataset with crowdsourced traffic logs collected using the Lumen

Privacy Monitor, an app that aims to promote mobile transparency and enable user control

over their mobile traffic [Raz+15; Lum] to obtain anonymized network flow metadata from

real users. This allows us to correlate the information we extract from static analysis, for a

subset of mobile apps, with realistic network traffic generated by mobile users in the wild and

captured in user-space. In the remainder of this section, we explain the method implemented

by Lumen and discuss the ethical implications of this data collection.

5.1.1 Lumen Privacy Monitor

Lumen is an Android app that was available on Google Play up until September 2021 and aims

to promote mobile transparency and enable user control over their personal data and traffic.

It leverages the Android VPN permission to intercept and analyze all Android traffic in user-

1We found that 5,244 of the apps do not have any activity, service, or receiver. These apps may potentially be
used as providers of resources (e.g., images, fonts) for other apps.

48

5.1. DATA SOURCES

ac
er

ad
va

n
al

lv
ie

w
al

lw
in

ne
r

al
ps

am
lo

gi
c

ar
ch

os
as

us
bl

ac
kb

er
ry

bl
ac

kv
ie

w bl
u bq

co
ol

pa
d

do
og

ee
gi

on
ee

go
og

le
ho

no
r

ht
c

hu
aw

ei
le

ec
o

le
no

vo lg
e

m
ei

zu
m

et
ro

pc
s

m
icr

om
ax

m
ot

or
ol

a
no

ki
a

on
ep

lu
s

op
po

po
sit

iv
o

rc
a

sa
m

su
ng

sm
ar

tfr
en

so
ftw

in
ne

rs
so

ny tc
l

te
cn

o
ve

riz
on vi
vo

vo
da

fo
ne

wi
ko

xi
ao

m
i

zt
e

Vendor

100

101

102

103

Nu
m

be
r o

f f
ile

s (
lo

g
sc

al
e)

Major versions
4
5
6
7
8
9

Files types
Apps
Libs
Certs

Figure 7: Number of files per vendor. We do not display the vendors for which we have less
than 3 devices.

space and in-situ, even if encrypted, without needing root permissions. By running locally

on the user’s device, Lumen is able to correlate traffic flows with system-level information

and app activity. Lumen’s architecture is publicly available and described in [Raz+15]. Lumen

allows us to accurately determine which app is responsible for an observed PII leak from the

vantage point of the user and as triggered by real user and device stimuli in the wild. Since all

the analysis occurs on the device, only processed traffic metadata is exfiltrated from the device,

and no personal data and traffic payloads is collected.

For this study, we use anonymized traffic logs provided by over 20.4K users from 144 coun-

tries (according to Google Play Store statistics) coming from Android phones manufactured by

291 vendors. This includes 34,553,193 traffic flows from 139,665 unique apps (298,412 unique

package name and version combinations). However, as Lumen does not collect app finger-

prints or hashes of files, to find the overlap between the Lumen dataset and the pre-installed

apps, we match records sharing the same package name, app version, and device vendor as the

ones in the pre-installed apps dataset. While this method does not guarantee that the over-

lapping apps are exactly the same, it is safe to assume that phones that are not rooted are not

shipped with different apps under the same package names and app versions. As a result, we

have 1,055 unique pre-installed app/version/vendor combinations present in both datasets.

Ethical Concerns

Our study involves the collection of data from real users who organically installed Lumen on

their devices. Therefore, we follow the principles of informed consent [DK12] and we avoid the

collection of any personal or sensitive data. We sought the approval of our Intitutional Review

Board (IRB) and Data Protection Officer (DPO) before starting the data collection. Lumen also

provided extensive privacy policies in its Google Play profile, up until its removal from the

platform in September, 2021.

Users are required to opt in twice before initiating traffic interception [DK12]. Lumen

49

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

preserves its users’ privacy by performing flow processing and analysis on the device, only

sending anonymized flow metadata for research purposes. Lumen does not send back any

unique identifiers, device fingerprints, or raw traffic captures. To further protect user’s privacy,

Lumen also ignores all flows generated by browser apps which may potentially deanonymize

a user; and allows the user to disable traffic interception at any time.

5.2 Supply Chain Analysis

The openness of Android OS has enabled a complex supply chain ecosystem formed by dif-

ferent stakeholders, be it manufacturers, MNOs, affiliated developers, and distributors. These

actors can add proprietary apps and features to Android devices, seeking to provide a bet-

ter user experience, add value to their products, or provide access to proprietary services.

However, this could also be for (mutual) financial gain [Fac; New]. This section provides an

overview of pre-installed Android packages to uncover some of the gray areas that surround

them, the large and diverse set of developers involved, the presence of third-party advertising

and tracking libraries, and the role of each stakeholder.

5.2.1 Developer Ecosystem

We start our study by analyzing the organizations signing each pre-installed app. First, we

cluster apps by the unique certificates used to sign them and then we rely on the information

present in the Issuer field of the certificate to identify the organization [Sig]. Despite the

fact that this is the most reliable signal to identify the organization signing the software, it is

still noisy as a company can use multiple certificates, one for each organizational unit. More

importantly, these are self-signed certificates, which significantly lowers the trust that can be

put on them.

We were unable to identify the company behind several certificates (denoted as Unknown

company in Table 5.2) due to insufficient or dubious information in the certificate: e.g., the

Issuer field only contains the mentions Company and department. We have come across apps

that are signed by 42 different ”Android Debug” certificates on phones from 21 different brands.

This reflects poor and potentially insecure development practices as Android’s debug certificate

is used to automatically sign apps in development environments, hence enabling other apps

signed with that certificate to access its functionality without requesting any permission. Most

app stores (including Google Play) will not accept the publication of an app signed with a

Debug certificate [Andi]. Furthermore, we also found as many as 115 certificates that only

mention “Android” in the Issuer field. A large part (43%) of those certificates are supposedly

50

5.2. SUPPLY CHAIN ANALYSIS

Company name Number of
certificates Country Certified

partner?

Google 92 United States N/A
Motorola 65 US/China Yes
Asus 60 Taiwan Yes
Samsung 38 South Korea Yes
Huawei 29 China Yes
TCL Corporation 23 China Yes
Lenovo 20 China Yes
LG Electronics 18 South Korea Yes
Sony Corporation 18 Japan Yes
ZTE Corporation 16 China Yes

Total (vendors) 740 — —

Company name Number of
certificates Country Number of

vendors

MediaTek 19 China 17
Aeon 12 China 3
Tinno Mobile 11 China 6
Verizon Wireless 10 United States 5
Neffos (TP-Link) 7 China 1
Unknown company 7 China 1
Wingtech 5 China 2
Huaqin 5 China 5
Zhantang 4 China 14
Longcheer 4 China 1

Total 460 — 214

Table 5.2: Left: top-10 most frequent developers (as per the total number of apps signed by
them), and right: for other companies.

issued in the US, while others seem to have been issued in Taiwan (16%), China (13%), and

Switzerland (13%). In the absence of a public list of official developer certificates, it is not

possible to verify their authenticity or know their owner, as discussed in Section 5.6.

With this in mind, we extracted 1,200 unique signing certificates out of our dataset. Ta-

ble 5.2 shows the 5 most present companies in the case of phone vendors (left) and other devel-

opment companies (right). Besides vendor certificates, Google certificates is a notable excep-

tion, although it is not surprising to see Google certificates, the company being at the origin

of the Android project. 7 of the 10 most present companies are ODM companies or chipset

vendors but also large telecommunication companies such as Verizon Wireless. This analy-

sis uncovered a vast landscape of third-party software in the long-tail, including large digital

companies (e.g., inkedIn, Spotify, and TripAdvisor), as well as advertising and tracking services.

This is the case of ironSource, an advertising firm signing pre-installed software [Iroa] found in

Asus, Wiko and other vendors, and TrueCaller, a service to block unwanted call or texts [Truc].

According to their website and also independent sources [Trub; Trud], TrueCaller uses crowd-

sourced mechanisms to build a large dataset of phone numbers used for spam and also for

advertising. This can have nefarious consequences for end users’ privacy, as highlighted by

Privacy International [Trua]. Likewise, we have found 123 apps (by their MD5) signed by

Facebook. These apps are found in 939 devices, 68% of which are Samsung’s. We have also

found apps signed by AccuWeather, a weather service previously found collecting personal

data aggressively [Ren+18], Adups software, responsible for the Adups backdoor [Krya], and

GMobi [Gmob], a mobile-advertising company previously accused of dubious practices by the

Wall Street Journal [New].

51

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

Category # libraries # apps # vendors Example

Advertisement 164 (107) 11,935 164 Braze
Mobile analytics 100 (54) 6,935 158 Apptentive
Social networks 70 (20) 6,652 157 Twitter

All categories 334 25,333 165 —

Table 5.3: Selected third-party libraries categories present in pre-installed apps. In brackets,
we report the number of TPLs when grouped by package name.

5.2.2 Third-party Services

As in the web, mobile app developers can embed in their pre-installed software third-party

libraries (TPLs) provided by other companies, including libraries (SDKs) provided by ad net-

works, analytics services or social networks. In this sectionwe use LibRadar++, an obfuscation-

resilient tool to identify TPLs used in Android apps [Wan+18a], on our dataset to examine their

presence due to the potential privacy implications for users: when present in pre-installed

apps, TPLs have the capacity to monitor user’s activities longitudinally [VR+12; Raz+18]. We

exclude well-known TPLs providing development support such as the Android support library.

First, we classify the 11,665 unique TPLs identified by LibRadar++ according to the categories

reported by Li et al. [Li+16], AppBrain [Appg], and PrivacyGrade [Pria]. We manually classi-

fied those TPLs that were not categorized by these datasets.

We focus on categories that could cause harm to the users’ privacy, such asmobile analytics

and targeted advertisement libraries. We find 334 TPLs in such categories, as summarized in

Table 5.3. We could identify advertising and tracking companies such as Smaato (specialized

in geo-targeted ads [Sma]), GMobi, Appnext, ironSource, Crashlytics, and Flurry. Some of

these third-party providers were also found shipping their own packages in Section 5.2.1 or

are prominent actors across apps published in Google Play Store [Raz+18]. We found 806 apps

embedding Facebook’s Graph SDK which is distributed over 748 devices. The certificates of

these apps suggests that 293 of them were signed by the device vendor, and 30 by an operator

(only 98 are signed by Facebook itself). The presence of Facebook’s SDKs in pre-installed

apps could, in some cases, be explained by partnerships established by Facebook with Android

vendors as the New York Times revealed [Fac].

We found other companies that provide mobile analytics and app monetization schemes

such as Umeng, Fyber (previously Heyzap), and Kochava [Raz+18]. We also found instances

of advanced analytics companies in Asus handsets such as Appsee [Appc] and Estimote [Est].

According to their website, Appsee is a TPL that allows developers to record and upload the

users’ screen [Appb], including touch events [Pan+18]. If, by itself, recording the user’s screen

52

5.2. SUPPLY CHAIN ANALYSIS

does not constitute a privacy leak, recording and uploading this data could unintentionally

leak private information such as account details. Estimote develops solutions for indoors geo-

localization [Est]. Estimote’s SDK allows an app to react to nearby wireless beacons to, for

example, send personalized push notifications to the user upon entering a shop

Finally, we find TPLs provided by companies specialized in the Chinese market [Wan+18a]

in 548 pre-installed apps. The most relevant ones are Tencent’s SDK, AliPay (a payment ser-

vice) and Baidu SDK [Baid] (for advertising and geolocation / geo-coding services), the last two

possibly used as replacements for Google Pay and Maps in the Chinese market, respectively.

Only one of the apps embedding these SDKs is signed by the actual third-party service provider,

which indicates that their presence in pre-installed apps is likely due to the app developers’

design decisions.

5.2.3 Public and Non-public Apps

We crawled the Google Play Store to identify how many of the pre-installed apps found by

Firmware Scanner are available to the public. This analysis took place on the 19th of November,

2018 and we only used the package name of the pre-installed apps as a parameter. We found

that only 9% of the package names in our dataset are indexed in theGoogle Play Store. For those

indexed, few categories dominate the spectrum of pre-installed apps according to Google Play

metadata, notably communication, entertainment, productivity, tools, and multimedia apps.

The low presence of pre-installed apps in the store suggests that this type of software might

have escaped any scrutiny by the research community. In fact, we have found samples of pre-

installed apps developed by prominent organizations that are not publicly available on Google

Play. For instance, software developed and signed by Facebook (com.facebook.appmanager

for instance), Amazon, and CleanMaster among others. Likewise, we found non-publicly avail-

able versions of popular web browsers (e.g., UME Browser, Opera).

Note that it is possible that these apps were not pre-loaded by a stakeholder of the sup-

ply chain, but might instead be installed on a system partition later on by a FOTA app. To

verify this hypothesis, we performed the first large-scale and systematic analysis of the FOTA

ecosystem through a dataset of 2,013 FOTA apps detected with a tool that we designed specif-

ically for this purpose over 422,121 pre-installed apps. We classified the different stakeholders

developing and deploying FOTA apps and showed that 43% of FOTA apps are in fact devel-

oped by third parties, and not by the phone vendor itself. Moreover, we reported that some

devices can have as many as 5 apps implementing FOTA capabilities, from different categories

of stakeholders.

53

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

By means of static analysis of the code of FOTA apps, we showed that some of these apps

present behaviors that can be considered privacy intrusive, such as the collection of sensitive

user data (e.g., geolocation linked to unique hardware identifiers), and a significant presence

of third-party trackers. We also discovered implementation issues leading to critical vulnera-

bilities, such as the use of public AOSP test keys both for signing FOTA apps and for update

verification, thus allowing any update signed with the same key to be installed. Finally, we

used telemetry data collected from real devices by a NortonLifeLock and demonstrated that

some FOTA apps are also responsible for the installation of non-system apps (e.g., entertain-

ment apps and games), including malware and Potentially Unwanted Programs (PUP).

Looking at the last update information reported by Android’s package manager for these

apps, we found that pre-installed apps also present on Google Play are updated more often

than the rest of pre-installed apps: 74% of the non-public apps do not seem to get updated and

41% of them remained unpatched for 5 years or more. If a vulnerability exists in one of these

apps (see Section 5.4), the user may stay at risk for as long as they keep using the device.

5.3 Permission Analysis

Android permissions are not limited to those defined by AOSP: any app developer – including

manufacturers – can define their own custom permissions to expose their functionality to other

apps [Cusb]. We leverage Androguard [Anda] to extract the permissions, both defined and

requested, by pre-installed apps. We primarily focus on the analysis of custom permissions as

(i) pre-installed services have privileged access to system resources, and (ii) these services may

(involuntarily) expose critical services and data, even bypassing Android’s official permission

set. In this section, we study in particular the actors of the supply chain that are behind these

custom permissions. We will later complement this analysis in Chapter 7 by studying the

prevalence overall of custom permissions and characterize their purpose by means of code

analysis.

5.3.1 Defined Custom Permissions

We identify 1,795 unique Android package names across 108 Android vendors defining 4,845

custom permissions. We exclude AOSP–defined permissions, as well as those associated with

Google Cloud Messaging (GCM) [Gcma]. The number of custom permissions defined per An-

droid vendor varies across brands and models due to the actions of other stakeholders in the

supply chain. We classify the organizations defining custom permissions in 8 groups as shown

in Table 5.4: hardware vendors, MNOs (e.g., Verizon), third-party services (e.g., Facebook),

54

5.3. PERMISSION ANALYSIS

Custom Providers

permissions Vendor Third-party MNO Chipset AV / Security Ind. Alliance Browser Other

Total 4,845 (108) 3,760 (37) 192 (34) 195 (15) 67 (63) 46 (13) 29 (44) 7 (6) 549 (75)

Android Modules

android 494 (21) 410 (9) — 12 (2) 4 (13) — 6 (7) — 62 (17)
com.android.systemui 90 (15) 67 (11) 1 (2) — — — — — 22 (8)
com.android.settings 87 (16) 63 (12) — 1 (1) — — — — 23 (8)
com.android.phone 84 (14) 56 (9) — 5 (2) 3 (5) — — — 20 (10)
com.android.mms 59 (11) 35 (10) — 1 (2) — — 1 (1) — 22 (8)
com.android.contacts 40 (7) 32 (3) — — — — — — 8 (5)
com.android.calendar 33 (10) 24 (6) — — — — — — 9 (6)
com.android.email 33 (10) 18 (4) — — — — — — 15 (17)
com.android.gallery3d 29 (9) 27 (8) — — — — 2 (1) — —
com.android.nfc 28 (16) 21 (7) — — — — 3 (13) — 4 (4)

Table 5.4: Summary of custom permissions per provider category and their presence in se-
lected sensitive Android core modules. The value in brackets reports the number of Android
vendors in which custom permissions were found.

Anti-Virus (AV) firms (e.g., Avast), industry alliances (e.g., GSM Association (GSMA)), chipset

manufacturers (e.g., Qualcomm), and browsers (e.g., Mozilla). We could not confidently iden-

tify the organizations responsible for 9% of all the custom permissions.2

As shown in Table 5.4, 63% of all defined custom permissions are defined by 31 handset ven-

dors according to our classification. Most of them are associated with proprietary services such

as Mobile Device Management (MDM) solutions for enterprise customers. Yet three vendors

account for over 68% of the total custom permissions; namely Samsung (41%), Huawei (20%),

and Sony (formerly Sony-Ericsson, 7%). Most of the custom permissions added by hardware

vendors–along with chipset manufacturers, and MNOs–are exposed by Android core services,

including the default browser com.android.browser. Tables 5.6 and 5.6 show some examples

of such custom permissions. Unfortunately, as demonstrated in the MediaTek case [Fel+11c],

exposing such sensitive resources in critical services may potentially increase the attack sur-

face if not implemented carefully.

2While Android’s documentation recommends using reverse-domain-style naming for defining custom permis-
sions to avoid collisions. [Cusb], 269 of them – many of which are defined by a single hardware vendor – start with
AOSP prefixes such as android.permission.*. The absence of good development practices among developers
complicated this classification, forcing us to follow a semi-manual process that involved analyzing multiple signals
(the permission name, package name of the defining app, and signing certificate) to identify their possible purpose
and for attribution.

55

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

M
A
N
U
FA

C
T
U
R
ER

PE
R
M

IS
SI

O
N
S

Pa
ck

ag
e
na

m
e

D
ev

el
op

er
Si
gn

at
ur

e
Ve

nd
or

(s
)

Pe
rm

is
si
on

co
m.
se
c.
an
dr
oi
d.
ap
p.
sn
s3

A
nd

ro
id

SW
2
Gr

ou
p
(K

R)
Sa

m
su

ng
*.
pe
rm
is
si
on
.S
NS
_L
IN
KE
DI
N_
AP
I

co
m.
ht
c.
li
nk
ed
in

A
nd

ro
id

(T
W

)
H
TC

*.
pe
rm
is
si
on
.u
se
pr
ov
id
er

co
m.
an
dr
oi
d.
ca
le
nd
ar

So
ny

Er
ic
ss
on

(S
E)

So
ny

*.
li
nk
ed
in
.S
YN
C

co
m.
so
ny
er
ic
ss
on
.f
ac
eb
oo
k.
pr
ox
yl
og
in

So
ny

Er
ic
ss
on

(S
E)

So
ny

co
m.
so
ny
er
ic
ss
on
.p
er
mi
ss
io
n.
FA
CE
BO
OK

co
m.
so
ny
mo
bi
le
.t
wi
tt
er
.a
cc
ou
nt

So
ny

Er
ic
ss
on

(S
E)

So
ny

co
m.
so
ny
mo
bi
le
.p
er
mi
ss
io
n.
TW
IT
TE
R

an
dr
oi
d

So
ny

Er
ic
ss
on

(S
E)

So
ny

co
m.
so
ny
mo
bi
le
.g
oo
gl
ea
na
ly
ti
cs
pr
ox
y.
pe
rm
is
si
on
.G
OO
GL
E_
AN
AL
YT
IC
S

co
m.
ht
c.
so
ci
al
ne
tw
or
k.
fa
ce
bo
ok

A
nd

ro
id

(T
W

)
H
TC

*.
pe
rm
is
si
on
.S
YS
TE
M_
US
E

co
m.
so
ny
mo
bi
le
.g
ma
il
re
ad
er
se
rv
ic
e

So
ny

Er
ic
ss
on

(S
E)

So
ny

co
m.
so
ny
mo
bi
le
.p
er
mi
ss
io
n.
RE
AD
_G
MA
IL

co
m.
se
c.
an
dr
oi
d.
da
em
on
ap
p

Sa
m
su

ng
Co

rp
or

at
io
n
(K

R)
Sa

m
su

ng
*.
ap
.a
cc
uw
ea
th
er
.A
CC
UW
EA
TH
ER
_D
AE
MO
N_
AC
CE
SS
_P
RO
VI
DE
R

co
m.
se
c.
en
te
rp
ri
se
.k
no
x.
cl
ou
dm
dm
.s
md
ms

Sa
m
su

ng
(K

R)
Sa

m
su

ng
*.
pe
rm
is
si
on
.S
AM
SU
NG
_M
DM
_S
ER
VI
CE

an
dr
oi
d

Le
no

vo
(C

N
)

Le
no

vo
an
dr
oi
d.
pe
rm
is
si
on
.L
EN
OV
O_
MD
M

co
m.
as
us
.l
og
up
lo
ad
er
pr
ox
y

As
us

Te
k
(T

W
)

As
us

as
us
.p
er
mi
ss
io
n.
MO
VE
LO
GS

co
m.
mi
ui
.c
or
e

Xi
ao

m
i(
CN

)
Xi

ao
m
i

mi
ui
.p
er
mi
ss
io
n.
DU
MP
_C
AC
HE
D_
LO
G

an
dr
oi
d

Sa
m
su

ng
(K

R)
Sa

m
su

ng
co
m.
se
c.
en
te
rp
ri
se
.k
no
x.
KN
OX
_G
EN
ER
IC
_V
PN

co
m.
se
c.
en
te
rp
ri
se
.p
er
mi
ss
io
ns

Sa
m
su

ng
(K

R)
Sa

m
su

ng
an
dr
oi
d.
pe
rm
is
si
on
.s
ec
.M
DM
_E
NT
ER
PR
IS
E_
VP
N_
SO
LU
TI
ON

co
m.
an
dr
oi
d.
vp
nd
ia
lo
gs

M
ei
zu

(C
N
)

M
ei
zu

co
m.
me
iz
u.
pe
rm
is
si
on
.C
ON
TR
OL
_V
PN

co
m.
an
dr
oi
d.
br
ow
se
r

Sa
m
su

ng
(K

R)
Sa

m
su

ng
co
m.
se
c.
an
dr
oi
d.
ap
p.
br
ow
se
r.
pe
rm
is
si
on
.B
OO
KM
AR
K

M
N
O

PE
R
M

IS
SI

O
N
S

Pa
ck

ag
e
na

m
e

D
ev

el
op

er
Si
gn

at
ur

e
M

N
O

Pe
rm

is
si
on

co
m.
an
dr
oi
d.
mm
s

ZT
E

T-
M
ob

ile
US

co
m.
tm
ob
il
e.
co
mm
.R
EC
EI
VE
_M
ET
RI
CS

an
dr
oi
d

M
ot
or
ol
a

T-
M
ob

ile
US

co
m.
tm
ob
il
e.
co
mm
.R
EC
EI
VE
_M
ET
RI
CS

co
m.
lg
e.
ip
se
rv
ic
e

LG
T-

M
ob

ile
US

co
m.
tm
ob
il
e.
co
mm
.R
EC
EI
VE
_M
ET
RI
CS

hr
.i
nf
in
um
.m
oj
vi
p

In
fin

um
(H

R)
[In

f]
H
1
Cr

oa
tia

hr
.i
nf
in
um
.m
oj
vi
p.
pe
rm
is
si
on
.R
EC
EI
VE
_A
DM
_M
ES
SA
GE

co
m.
lo
ca
ti
on
la
bs
.c
ni
.a
tt

AT
&
T
(U

S)
AT

&
T
(U

S)
[L

oc
]

co
m.
lo
ca
ti
on
la
bs
.c
ni
.a
tt
.p
er
mi
ss
io
n.
BR
OA
DC
AS
T

co
m.
as
ur
io
n.
an
dr
oi
d.
ve
ri
zo
n.
vm
s

As
ur

io
n
(U

S)
[A

su
a]

Ve
riz

on
(U

S)
co
m.
as
ur
io
n.
an
dr
oi
d.
ve
ri
zo
n.
vm
s.
pe
rm
is
si
on
.C
2D
_M
ES
SA
GE

co
m.
sm
it
hm
ic
ro
.n
et
wi
se
.d
ir
ec
to
r.
cr
ic
ke
t

Sm
ith

M
ic
ro

(U
S)

[S
m
i]

Cr
ic
ke

t(
US

)
co
m.
sm
it
hm
ic
ro
.n
et
wi
se
.d
ir
ec
to
r.
cr
ic
ke
t.
MN
D_
AU
TO
MA
TI
ON

jp
.n
av
er
.l
in
e.
an
dr
oi
d

N
av

er
(J
P)

So
ut
h
Ko

re
a
Te

le
ko

m
co
m.
sk
t.
ao
m.
pe
rm
is
si
on
.A
OM
_R
EC
EI
VE

Ta
bl
e
5.5

:E
xa

m
pl
es

of
cu

st
om

pe
rm

iss
io
ns

fro
m

m
an

uf
ac

tu
re
rs

an
d
M
N
O
s.

Th
e
w
ild

ca
rd

*r
ep

re
se
nt
st

he
pa

ck
ag

e
na

m
e
w
he

ne
ve

rt
he

pe
rm

iss
io
n
pr

efi
x
an

d
th
e
pa

ck
ag

e
na

m
e
ov

er
la
p.

56

5.3. PERMISSION ANALYSIS

TH
IR

D
-P

A
R
T
Y

SE
R
V
IC

E
PE

R
M

IS
SI

O
N
S

Pa
ck

ag
e
na

m
e

D
ev

el
op

er
Si
gn

at
ur

e
Pr

ov
id

er
Pe

rm
is
si
on

co
m.
fa
ce
bo
ok
.s
ys
te
m

Fa
ce

bo
ok

Fa
ce

bo
ok

*.
AC
CE
SS

co
m.
fa
ce
bo
ok
.a
pp
ma
na
ge
r

Fa
ce

bo
ok

Fa
ce

bo
ok

*.
AC
CE
SS

co
m.
am
az
on
.m
Sh
op
.a
nd
ro
id
.s
ho
pp
in
g

A
m
az

on
A
m
az

on
co
m.
am
az
on
.c
li
en
t.
me
tr
ic
s.
ne
xu
s.
pe
rm
is
si
on
.T
RI
GG
ER
_U
PL
OA
D

co
m.
am
az
on
.k
in
dl
e

A
m
az

on
A
m
az

on
co
m.
am
az
on
.i
de
nt
it
y.
au
th
.d
ev
ic
e.
pe
rm
.A
UT
H_
SD
K

co
m.
hu
aw
ei
.a
nd
ro
id
.t
ot
em
we
at
he
r

H
ua

w
ei

(C
N
)

Ba
id
u

an
dr
oi
d.
pe
rm
is
si
on
.B
AI
DU
_L
OC
AT
IO
N_
SE
RV
IC
E

co
m.
jr
dc
om
.u
se
rc
ar
d

TC
LM

ob
ile

(C
N
)

Ba
id
u

an
dr
oi
d.
pe
rm
is
si
on
.B
AI
DU
_L
OC
AT
IO
N_
SE
RV
IC
E

co
m.
op
po
.f
in
dm
yp
ho
ne

O
pp

o
(C

N
)

Ba
id
u

an
dr
oi
d.
pe
rm
is
si
on
.B
AI
DU
_L
OC
AT
IO
N_
SE
RV
IC
E

co
m.
an
dr
oi
d.
ca
me
ra

Yu
Lo

ng
(C

N
)

Ba
id
u

an
dr
oi
d.
pe
rm
is
si
on
.B
AI
DU
_L
OC
AT
IO
N_
SE
RV
IC
E

co
m.
dt
i.
sl
ii
de

Lo
gi
a

D
ig
ita

lT
ur

bi
ne

co
m.
di
gi
ta
lt
ur
bi
ne
.i
gn
it
e.
AC
CE
SS
_L
OG

co
m.
dt
i.
at
t

Lo
gi
a

D
ig
ita

lT
ur

bi
ne

co
m.
dt
i.
at
t.
pe
rm
is
si
on
.A
PP
_E
VE
NT
S

co
m.
ir
on
so
ur
ce
.a
pp
cl
ou
d.
oo
be
.w
ik
o

iro
nS

ou
rc
e

iro
nS

ou
rc
e

co
m.
ir
on
so
ur
ce
.a
ur
a.
pe
rm
is
si
on
.C
2D
_M
ES
SA
GE

co
m.
vc
as
t.
me
di
am
an
ag
er

Ve
riz

on
(U

S)
Sy

nc
hr

on
os

s
co
m.
sy
nc
hr
on
os
s.
an
dr
oi
d.
sy
nc
.p
ro
vi
de
r.
FU
LL
_P
ER
MI
SS
IO
N

co
m.
my
vo
da
fo
ne
.a
nd
ro
id

Vo
da

fo
ne

(G
R)

Ex
us

uk
.c
o.
ex
us
.p
er
mi
ss
io
n.
C2
D_
ME
SS
AG
E

co
m.
tr
en
dm
ic
ro
.f
re
et
mm
s.
gm
ob
i

Tr
en

dM
ic
ro

(T
W

)
GM

ob
i

co
m.
tr
en
dm
ic
ro
.a
nd
ro
id
mu
p.
AC
CE
SS
_T
MM
SM
U_
RE
MO
TE
_S
ER
VI
CE

co
m.
sk
yp
e.
ro
ve
r

Sk
yp

e
(G

B)
Sk

yp
e

co
m.
sk
yp
e.
an
dr
oi
d.
pe
rm
is
si
on
.R
EA
D_
CO
NT
AC
TS

co
m.
cl
ea
nm
as
te
r.
sd
k

Sa
m
su

ng
(K

R)
Cl

ea
nM

as
te
r

co
m.
cl
ea
nm
as
te
r.
pe
rm
is
si
on
.s
dk
.c
le
an

co
m.
ne
tf
li
x.
pa
rt
ne
r.
ac
ti
va
ti
on

N
et
fli
x
(U

S)
N
et
fli
x

*.
pe
rm
is
si
on
.C
HA
NN
EL
_I
D

C
H
IP

SE
T

PE
R
M

IS
SI

O
N
S

Pa
ck

ag
e
na

m
e

D
ev

el
op

er
Si
gn

at
ur

e
Pr

ov
id

er
Pe

rm
is
si
on

co
m.
qu
al
co
mm
.l
oc
at
io
n

ZT
E
(C

N
)

Qu
al
co

m
m

co
m.
qu
al
co
mm
.p
er
mi
ss
io
n.
IZ
AT

co
m.
qu
al
co
mm
.l
oc
at
io
n

Xi
ao

m
i(
CN

)
Qu

al
co

m
m

co
m.
qu
al
co
mm
.p
er
mi
ss
io
n.
IZ
AT

co
m.
qu
al
co
mm
.l
oc
at
io
n

So
ny

(S
E)

Qu
al
co

m
m

co
m.
qu
al
co
mm
.p
er
mi
ss
io
n.
IZ
AT

co
m.
me
di
at
ek
.m
tk
lo
gg
er

TC
L
(C

N
)

M
ed

ia
Te

k
co
m.
pe
rm
is
si
on
.M
TK
LO
GG
ER

co
m.
an
dr
oi
d.
bl
ue
to
ot
h

Sa
m
su

ng
(K

R)
Br

oa
dc

om
br
oa
dc
om
.p
er
mi
ss
io
n.
BL
UE
TO
OT
H_
MA
P

Ta
bl
e
5.6

:E
xa

m
pl
es

of
cu

st
om

pe
rm

iss
io
ns

fro
m

th
ird

-p
ar
ty

se
rv

ic
es

an
d
ch

ip
se
ts

m
an

uf
ac

tu
re
rs
.Th

e
w
ild

ca
rd

*r
ep

re
se
nt
st

he
pa

ck
ag

e
na

m
e
w
he

ne
ve

rt
he

pe
rm

iss
io
n
pr

efi
x
an

d
th
e
pa

ck
ag

e
na

m
e
ov

er
la
p.

57

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

An exhaustive analysis of custom permissions and of the apps exposing them also suggests

(and in some cases confirms) the presence of service integration and commercial partnerships

between handset vendors, MNOs, analytics services (e.g., Baidu, ironSource, and Digital Tur-

bine), and online services (e.g., Skype, LinkedIn, Spotify, CleanMaster, and Dropbox). We also

found custom permissions associated with vulnerable modules (e.g., MediaTek) and potentially

harmful services (e.g., Adups). We discuss cases of interest below.

MDM solutions: Samsung, Lenovo and LG incorporate Mobile Device Management (MDM)

solutions for the remote administration and monitoring of mobile devices, mainly for enter-

prise customers. We have identified proprietaryMDM-related permissions in Samsung [Samc],

LG [Lgb], and Lenovo [Len] devices. MDM software is over-privileged by definition and allows

collecting fine-grained telemetry about the device and user. Further, pre-installed packages in

Xiaomi, Samsung, Asus and Sony handsets expose custom permissions to read and upload to

the cloud system logs and telemetry, While there may be legitimate usages for these permis-

sions, hence potentially opening new privacy risks to users if not implemented carefully.

We could also identify customMDMpermissions associatedwith companies such asAether-

Pal [Aet], and MediaTek’s log reporting service (e.g., com.permission.MTKLOGGER) LogMeIn,

and RSupport in several vendors. In some cases, the software exposing these permissions is

signed by MNOs and hardware vendors. There are interesting differences across these solu-

tions. The pre-installed app net.aetherpal.device and com.rsupport.rsperm are signed

by the Android manufacturers directly. LogMeIn, instead, defines custom permissions for two

MNOs (e.g., com.lmi.vodafone.*) and two hardware vendors (e.g., com.lmi.htc.*). but the

packages are always signed by LogMeIn.

VPN solutions: Android provides native support to third-party VPN clients. This feature

is considered as highly sensitive as it gives any app requesting access the capacity to break

Android’s sandboxing and monitor users’ traffic [Andaj; Ikr+16]. The analysis of custom per-

missions reveals that Samsung and Meizu implement their own VPN service. It is unclear why

these proprietary VPN implementations exist but it has been reported as problematic by VPN

developers for whom their clients, designed for Android’s default VPN service, do not run on

such handsets [Adg; Raz+15; Ikr+16]. A complete analysis of these VPN packages is left for

future work.

MNO permissions Mobile Network Operators (MNOs) may customize the firmware of the

Android devices that they offer to their customers. We identify 195 permissions associated

with 24 different MNOs in 15 vendors. Through these custom permissions, MNOs may add

value and expose proprietary services to over-the-top developers, a and partners for control-

58

5.3. PERMISSION ANALYSIS

Package Public # Vendors # Permissions

com.facebook.system No 18 2
com.facebook.appmanager No 15 4
com.facebook.katana (Facebook) Yes 14 8
com.facebook.orca (Messenger) Yes 5 5
com.facebook.lite (FB Lite) Yes 1 1
com.facebook.pages.app No 1 4

Total 3 24 18

Table 5.7: Facebook packages on pre-installed handsets.

ling and accessing users’ data plan, or configuring system resources. These practices are com-

mon among European, North American and large Asian mobile carriers. However, The custom

permissions defined by AT&T, South Korea Telekom, Verizon Wireless, Sprint and Vodafone

account together for 68% of all the MNO-defined permissions. As opposed to vendor-defined

permissions, MNO ones are exposed by over-the-top APKs as shown in Table 5.4. Themajority

of MNO permissions are exposed by apps developed by third-party developers but there are

instances of packages signed by handset manufacturers. This suggest the presence of commer-

cial agreements between manufacturers and MNOs as part of the supply chain. as in the case

of T-Mobile’s custom permission com.tmobile.comm.RECEIVE_METRICS which is defined in

packages signed by Motorola, Samsung, LG, ZTE, and HTC. Interestingly, in these cases, the

APK is signed by the hardware vendor. This suggests a close collaboration between hardware

manufacturers and MNOs at the time of customizing their subsidized devices.

MNO-preinstalled modules may also give MNOs the capacity to harvest fine-grained user

and system telemetry unavailable at the network-level. Several custom permissions are po-

tentially the result of MNOs outsourcing software development to other companies such as

Infinum.com [Inf] (H1 Croatia), LocationLabs [Loc]3 Asurion [Asua] (AT&T and Verizon), and

SmithMicro (Cricket) [Smi].4 Nevertheless, the majority of them are exposed by apps devel-

oped by third-party developers as shown in Table 5.5.

Facebook: We found 6 different Facebook packages, three of them unavailable on Google Play,

defining 18 custom permissions as shown in Table 5.7. These permissions have been found in 24

Android vendors, including Samsung, Asus, Xiaomi, HTC, Sony, and LG. According to users’

complaints, two of these packages (com.facebook.appmanager and com.facebook.system)

seem to automatically download other Facebook software in users’ phones [Andak; Xda], such

as Instagram. We also found interactions between Facebook and MNOs such as Sprint.

Baidu: Baidu’s geo-location permission is exposed by pre-installed apps, including core An-

3A subsidiary company of the security firm Avast which defines an AT&T-specific permission.
4According to their website, they have partnerships with cellular service providers such as Verizon Wireless,

AT&T, and Sprint Nextel.

59

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

droid modules, in 7 different vendors, mainly Chinese ones. This permission seems to be as-

sociated with Baidu’s geocoding API [Baic] and could allow app developers to circumvent

Android’s location permission.

Digital Turbine: We have identified 8 custom permissions in 8 vendors associated with Digi-

tal Turbine and its subsidiary LogiaGroup. Their privacy policy indicates that they collect per-

sonal data ranging from unique identifiers (UIDs) to traffic logs that could be shared with their

business partners, which are undisclosed [Dig]. According to the SIM information of these

devices, Digital Turbine modules are mainly found in North-American and Asian users. One

package name, com.dti.att (“dti” stands for Digital Turbine Ignite), suggests the presence of

a partnership with AT&T. A manual analysis confirms that this is the case. By inspecting their

source-code, this package seems to implement comprehensive software management service.

Installations and removals of apps by users are tracked and linked with PII, which only seem

to be “masked” (i.e., hashed) discretionally.

ironSource: The advertising company ironSource exposes custom permissions related to its

AURA Enterprise Solutions [Irob]. We have identified several vendor-specific packages ex-

posing custom ironSource permissions, in devices made by vendors such as Asus, Wiko, and

HTC (the package name and certificate signatures suggest that those modules are possibly in-

troduced with vendor’s collaboration). According to ironSource’s material [Iroc], AURA has

access to over 800 million users per month, while gaining access to advanced analytics services

and to pre-load software on customers’ devices. A superficial analysis of some of these pack-

ages (e.g., com.ironsource.appcloud.oobe.htc or com.ironsource.appcloud.oobe.asus)

reveals that they provide vendor-specific out-of-the-box-experience apps (OOBE) to customize

a given user’s device when the users open their device for the first time and empower user en-

gagement [Irob], while also monitoring users’ activities.

Other Advertising and Tracking Services: Discussing every custom permission introduced

by third-party services individually would require an analysis beyond the scope of this chapter.

However, there are a couple of anecdotes of interest that we discuss next. One is the case of a

pre-installed app signed by Vodafone (Greece) and present in a Samsung device that exposes

a custom permission associated with Exus [Exu], a firm specialized in credit risk management

and banking solutions. Another service defining custom permissions in Samsung and LG hand-

sets (likely sold by Verizon) is the analytics and user engagement company Synchronoss. Its

privacy policy acknowledges the collection, processing and sharing of personal data [Syn].

Chipset Manufacturers and Industry Alliances: Hardware manufacturers such as Qual-

comm, Broadcom, Mediatek, and Wingtech also develop pre-installed software that defines

60

5.3. PERMISSION ANALYSIS

custom permissions. Due to the nature of these providers, this software is broadly distributed

across Android handset vendors. Interestingly, in the majority of cases these permissions are

not exposed by critical Android services as shown in Table 5.4. This suggests that Chipset man-

ufacturers typically distribute their own APKs across Android vendors. Some of these permis-

sions are associatedwithA-GPS and location services [VR+13] (e.g., com.qualcomm.location),

wireless technologies such as Bluetooth, FOTA services, and network interface management.

We also identified 29 permissions associated with Industry alliances such as GSMA, FIDO,

Mirrorlink [Mir], ANT+ [Ant], or the SIM Alliance.

These efforts sometimes trigger innovation and standardization efforts in the form of SDKs

and solutions available to its members. These initiatives can be also observed when studying

custom permissions: we have identified 29 custom permissions associated with industry al-

liances in 44. As in the case of chipset and vendor-defined permissions, those falling in this

category can be also defined by critical Android services.

Call protection services: We identify three external companies providing services for block-

ing undesired and spam phone calls and text messages: Hiya [Hiya], TrueCaller [Truc], and

PrivacyStar [Prib]. Hiya’s solution seems to be integrated by T-Mobile (US), Orange (Spain),

and AT&T (US) in their subsidized Samsung and LG handsets according to the package signa-

tures. Hiya and TrueCaller’s privacy policies indicate that they collect personal data from end

users, including contacts stored in the device, UIDs, and personal information [Hiyb].5 Pri-

vacyStar’s privacy policy, instead, claims that any information collected from a given user’s

contacts is “NOT exported outside the App for any purpose” [Pric].

5.3.2 Requested Permissions

The use of permissions by pre-installed Android apps follows a power-law distribution: 4,736

of the package names request at least one permission and 55 apps request more that 100. The

fact that pre-installed apps request many permissions to deliver their service does not nec-

essarily imply a breach of privacy for the user. However, we identified a significant number

of potentially over-privileged vendor- and MNO-specific packages with suspicious activities

such as com.jrdcom.Elabel – a package signed by TCLMobile requesting 145 permissions

and labeled as malicious by Hybrid Analysis (a free online malware analysis service) –and

com.cube26.coolstore (144 permissions). Likewise, the calculator app found on a Xiaomi

Mi 4c requests user’s location and the phone state, which gives it access to UIDs such as the

5Note: the information rendered in their privacy policy differs when crawled from a machine in the EU or
the US. As of January 2019, none of these companies mention the new European GDPR directive in their privacy
policies.

61

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

A
llia

n
c
e
s

A
V

/S
e
c
u
rity

C
h
ip

s
e
t

M
N

O
T

h
ird

−
p
a
rtie

s

a
2
0
0
0

a
lc

a
te

l

a
llv

ie
w

a
lp

s

a
rc

h
o
s

a
s
u
s

b
la

c
k
b
e
rr

y

b
lu b
q

c
o
o
lp

a
d

d
o
o
g
e
e fl
y

g
io

n
e
e

g
o
o
g
le

h
is

e
n
s
e

h
m

d

h
tc

h
u
a
w

e
i

le
n
o
vo lg
e

m
e
iz

u

m
o
to

ro
la

o
p
p
o

o
y
s
te

rs

s
a
m

s
u
n
g

s
o
n
y

tc
l

w
ik

o

x
ia

o
m

i

z
te

ANT+
FIDO Alliance

GSMA
Linux Foundation

Mirrorlink
Open Mobile Alliance

SIM Alliance

AetherPal
Avast

BitDefender
Hiya

Infraware
Inside Secure

LogMeIn
Lookout
Mcafee

Panda Security
Qihoo360
RSupport
Symantec

Trendmicro
Truecaller

ARM Trustzone
Broadcom

Intel
Mediatek

NVIDIA
Qualcomm

Wingtech

A1 Hrvatska
AT&T

Bouygues
Cricket

Deutsche Telekom
Korea Telecom

MetroPCS
Mobiltel BG

NTT Docomo
Orange

S.K. Telecom
Singtel
Sprint

T−Mobile
TIM

Tracfone
Verizon

Vodafone

Amazon
Argus/Azumio

Baidu
Cleanmaster

Digital Turbine
Dropbox
Evernote
facebook
Flipboard
Futuredial

ICE Sound
ironSource

Microsoft
MobilesRepublic

MS SwiftKey
Naver
Netflix

Peel TV
Skype
Spotify

Synchronoss
TripAdvisor

Twitter
WhatsApp

Yahoo
Yandex

Yellowpages
Zalo

Handset vendor

20

40

60

n

Figure 8: Permissions defined by anti-virus firms, mobile network operators, chipset vendors
and third parties, requested by pre-installed apps.

International Mobile Equipment Identity (IMEI). We discuss more instances of over-privileged

apps in Section 5.4.3.

Dangerous Android permissions. The median pre-installed Android app requests three

dangerous AOSP permissions. When we look at the set of permissions requested by a given

app (by its package name) across vendors, we can notice significant differences. We investigate

such variations in a subset of 150 package names present at least in 20 different vendors. This

list contains mainly core Android services as well as apps signed by independent companies

(e.g., Adups) and chipset manufacturers (e.g., Qualcomm).

Then, we group together all the permissions requested by a given package name across all

device models for each brand. As in the case of exposed custom permissions, we can see a

62

5.3. PERMISSION ANALYSIS

tendency towards over-privileging these modules in specific vendors. For instance, the num-

ber of permissions requested by the core android module can range from 9 permissions in

a Google-branded Android device to over 100 in most Samsung devices. Likewise, while the

median com.android.contacts service requests 35 permissions, this number goes over 100

for Samsung, Huawei, Advan, and LG devices.

Custom permissions. 2,910 pre-installed apps request at least one custom permission. The

heatmap in Figure 8 shows the number of custom permissions requested by pre-installed pack-

ages in a hand-picked set of popular Android manufacturers (x-axis). As we can see, the use

of custom permissions also varies across vendors, with those associated with large third-party

analytics and tracking services (e.g., Facebook), MNOs (e.g., Vodafone), and AV/security ser-

vices (e.g., Hiya) being the most requested ones.

This analysis uncovers possible partnerships beyond those revealed in the previous sec-

tions. We identify vendor-signed services accessing ironSource’s, Hiya’s, and AccuWeather’s

permissions. This state of affairs potentially allows third-party services and developers to

gain access to protected permissions requested by other pre-installed packages signed with

the same signature. Further, we found Sprint-signed packages resembling that of Facebook

and Facebook’s Messenger APKs (com.facebook.orca.vpl and com.facebook.katana.vpl)

requesting Flurry-related permissions (a third-party tracking service owned by Verizon).

Commercial relationships between third-party services and vendors appear to be bidirec-

tional as shown in Figure 9. This figure shows evidence of 87 apps accessing vendor per-

missions, including packages signed by Facebook, ironSource, Hiya, Digital Turbine, Amazon,

Verizon, Spotify, various browser, and MNOs – grouped by developer signature for clarity pur-

poses. As the heatmap indicates, Samsung, HTC and Sony are the vendors enabling most of

the custom permissions requested by over-the-top apps. We found instances of apps listed

on the Play Store also requesting such permissions. Unfortunately, custom permissions are

not shown to users when shopping for mobile apps in the store–therefore they are apparently

requested without consent–allowing them to cause serious damage to users’ privacy when

misused by apps.

5.3.3 Permission Usage by Third-Party Libraries

We look at the permissions used by apps embedding at least one TPL. We study the access to

permissions with a protection level of either signature or signature|privileged as they

can only be granted to system apps [Sys] or those signed with a system signature. The pres-

ence of TPLs in pre-installed apps requesting access to a signature or dangerous permission

63

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

arcsoft
baidu inc.

bambuser ab
bitnpulse

blurb
central antivirus

cequint inc.
cnn

cootek
deezer.com

digital jigsaw
diotek

evernote
facebook inc.

flexilis
flipboard inc.

future dial
godaddy.com

hancom
hdradio

infraware
ironsource ltd.

ktshow
lbesec

maingames
mobile safe

mobile systems
mobiles republic

mobilkom austria ag
modula d.o.o.

naranya
nuance communications

ooo yandex
opera

orange
peel

project goth inc
qlixar

singtel
slacker

social hub
spotify
sprint

sweetlabs
symphony media gmbh

synchronoss tech.
t−mobile

telecom italia
telenav inc.

tencube pte ltd.
twitter

uc
verizon wireless

vire labs
vision objects

vlingo
vodafone group

vodafone portugal
vodafone romania

whatsapp inc.
wit−software

bl
ac

kb
er

ry ht
c

hu
aw

ei

le
no

vo lg
e

m
ot

or
ol
a

op
po

sa
m

su
ng

so
ny

−e
ric

ss
on

w
ik
o

zt
e

Handset vendor

S
ig

n
a
tu

re
 (

O
rg

)

10

20

30

n

Figure 9: Apps accessing vendors’ custom permissions.

can, therefore, give it access to very sensitive resources without user awareness and consent.

Figure 10 shows the distribution of signature permissions requested across apps embedding

TPLs. We find that the most used permissions—READ_LOGS—allows the app (and thus its em-

bedded TPLs) to read system logs, mount and unmount file systems, or install extra packages.

We find no significant differences between the three types of TPLs of interest. For complete-

ness, we also find that 94 apps embedding TPLs of interest request custom permissions as well.

Interestingly, 53% of the 88 custom permissions used by these apps are defined by Samsung.

5.3.4 Component Exposing

Custom permissions are not the only mechanism available for app developers to expose (or

access) features and components to (or from) other apps. Android apps can also interact with

each other using intents, a high-level communication abstraction [Andz]. An app may ex-

pose its component(s) to external apps by defining android:exported=true in the manifest

without protecting the component with any additional measure, or by adding one or more

64

5.3. PERMISSION ANALYSIS

0 50 100 150 200
Permission usage

CAPTURE_VIDEO_OUTPUT
CALL_PRIVILEGED

CAPTURE_AUDIO_OUTPUT
ACCOUNT_MANAGER

MOUNT_FORMAT_FILESYSTEMS
CHANGE_COMPONENT_ENABLED_STATE

BIND_APPWIDGET
SET_TIME

SET_TIME_ZONE
ACCESS_CHECKIN_PROPERTIES

MASTER_CLEAR
WRITE_APN_SETTINGS

STATUS_BAR
REBOOT

MODIFY_PHONE_STATE
BROADCAST_SMS

BROADCAST_WAP_PUSH
SEND_RESPOND_VIA_MESSAGE

UPDATE_DEVICE_STATS
DELETE_PACKAGES

WRITE_SECURE_SETTINGS
INSTALL_PACKAGES

MOUNT_UNMOUNT_FILESYSTEMS
READ_LOGS

Advertisement libraries
Analytics libraries
Social libraries

Figure 10: System permissions requested by pre-installed apps embedding third-party libraries.

intent-filters to its definition in the manifest; exposing it to a type of attack known in the lit-

erature as a confused deputy attack [Fel+11c]. If the exported attribute is used, it can be

protected by adding a permission to the component, be it a custom permission or an AOSP

one, through checking the caller app’s permissions programmatically in the component’s Java

class.

We sought to identify potentially careless development practices that may lead to compo-

nents getting exposed without any additional protection. Exporting components can lead to:

i) harmful or malicious apps launching an exposed activity, tricking users into believing that

they are interacting with the benign one; i i) initiating and binding to unprotected services; and

i i i) malicious apps gaining access to sensitive data or the ability to modify the app’s internal

state.

We found 6,849 pre-installed apps that potentially expose at least one activity in devices

from 166 vendors and signed by 261 developer signatures with exported=true. For services,

4,591 apps (present in 157 vendors) signed by 183 developers including manufacturers, poten-

tially exposed one or more of their services to external apps. The top-10 vendors in our dataset

account for over 70% of the potentially exposed activities and services. Relevant examples

include an app that potentially exposes several activities related to system configurations (de-

vice administration, networking, etc.), hence allowing a malicious developer could access or

even tamper a users’ device settings. The core package com.android.mms found in customized

firmware versions across several vendors also expose services to read WAP messages to other

apps. We also found 8 different instances of a third-party app, found in handsets built by two

large Android manufacturers, whose intended purpose is to provide remote technical support

65

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

to customers. This particular service provides remote administration to MNOs, including the

ability to record audio and video, browse files, access system settings, and upload/download

files. The key service to do so is exposed and can be misused by other apps.

We leave the detailed study of apps vulnerable to confused deputy attacks and the study

of the access to these resources by apps publicly available on Google Play for future work.

5.4 Behavioral Analysis

We analyze the apps in our dataset to identify potentially harmful and unwanted behaviors. To

do this, we leverage both static and dynamic analysis tools to elicit behavior and characterize

purpose and means. This section describes our analysis pipeline and evidence of potentially

harmful and privacy-intrusive pre-installed packages.

5.4.1 Static Analysis

We triage all apps to determine the presence of potentially harmful behaviors. This step allows

us to obtain a high-level overview of behaviors across the dataset and also provides us with

the basis to score apps and flag those potentially more interesting. This step is critical since

we could only afford to manually inspect a limited subset of all available apps.

Toolkit. Our analysis pipeline integrates various static analysis tools to elicit behavior in

Android apps, including Androwarn [Andq], FlowDroid [Arz+14], and Amandroid [Wei+14],

as well as a number of custom scripts based on the Apktool [Apkc] and Androguard [Anda]

frameworks. In this stage we do not use dynamic analysis tools, which prevents us from identi-

fying hidden behaviors that rely on dynamic code uploading (DEX loading) or reflection. This

means that our results present a lower-bound estimation of all the possible potentially harm-

ful behaviors. We search for apps using DEX loading and reflection to identify targets that

deserve manual inspection.

Dataset. Because of scalability limitations —our dataset comprises 82,501 APK files with 6,496

unique package names— we randomly select one APK file for each package name and analyze

the resulting set of apps, obtaining an analysis report for 48% of them. The majority of the

remaining packages could not be analyzed due to the absence of a classes.dex for ODEXed

files. Even though in some cases we had the corresponding .odex file, we generally could not

de-ODEX it since the device’s Android framework file was needed to complete this step but

Firmware Scanner did not collect it. Moreover, we could not analyze a small subset of apps due

to the limitations of our tools, including errors generated during analysis, file size limitations,

66

5.4. BEHAVIORAL ANALYSIS

or analysis tools becoming unresponsive after hours of processing. Instead, we focused our

analysis on the subset of apps for which we could generate reports.

Results. We processed the analysis reports and identified the presence of the 36 potentially

privacy intrusive behaviors or potentially harmful behaviors listed in Table 5.8. The results

suggest that a significant fraction of the analyzed apps could access and disseminate both

user and device identifiers, user’s location, and device current configuration. According to our

flow analysis, these results give the impression that personal data collection and dissemination

(regardless of the purpose or consent) is not only pervasive but also comes pre-installed. Other

a priori concerning behaviors include the possible dissemination of contacts and SMS contents

(164 and 74 apps, respectively), sending SMS (29 apps), andmaking phone calls (339 apps). Even

though there are perfectly legitimate use cases for these behaviors, they are also prevalent in

harmful and potentially unwanted software. The distribution of the number of potentially

harmful behaviors per app follows a power-law distribution. Around 25% of the analyzed apps

present at least 5 of these behaviors, with almost 1% of the apps showing 20 or more. The bulk

of the distribution relates to the collection of telephony and network identifiers, interaction

with the package manager, and logging activities. This provides a glimpse of how pervasive

user and device fingerprinting is nowadays.

5.4.2 Traffic Analysis

While static analysis can be helpful to determine a lower bound of what an app is capable of,

relying on this technique alone gives an incomplete picture of the real-world behavior of an

app. This might be due to code paths that are not available at the time of analysis, including

those that are within statically- and dynamically-linked libraries that are not provided with

apps, behaviors determined by server-side logic (e.g., due to real-time ad-bidding), or code

that is loaded at runtime using Java’s reflection APIs. This limitation of static approaches is

generally addressed by complementing static analysis with dynamic analysis tools. However,

due to various limitations (including missing hardware features and software components) it

was unfeasible for us to run all the pre-installed apps in our dataset in an analysis sandbox.

Instead, we decided to use the crowd-sourced Lumen mobile traffic dataset to find evidence of

dissemination of personal data from the pre-installed apps by examining packages that exist

in both datasets.

Results. Of the 3,118 pre-installed apps with Internet access permissions, 1,055 have at least

one flow in the Lumen dataset. At this point, our analysis of these apps focused on two main

aspects: uncovering the ecosystem of organizations who own the domains that these apps

67

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

Accessed PII type / behaviors Apps (#) Apps (%)

Telephony identifiers

IMEI 687 21.8%
IMSI 379 12%
Phone number 303 9.6%
MCC 552 17.5%
MNC 552 17.5%
Operator name 315 10%
SIM Serial number 181 5.7%
SIM State 383 12.1%
Current country 194 6.2%
SIM country 196 6.2%
Voicemail number 29 0.9%

Device settings

Software version 25 0.8%
Phone state 265 8.4%
Installed apps 1,286 40.8%
Phone type 375 11.9%
Logs 2,568 81.4%

Location

GPS 54 1.7%
Cell location 158 5%
CID 162 5.1%
LAC 137 4.3%

Network interfaces

Wi-Fi configuration 9 0.3%
Current network 1,373 43.5%
Data plan 699 22.2%
Connection state 71 2.3%
Network type 345 10.9%

Personal data Contacts 164 11%
SMS 73 2.3%

Phone service abuse

SMS sending 29 0.9%
SMS interception 0 0%
Disabling SMS notif. 0 0%
Phone calls 339 10.7%

Audio/video interception Audio recording 74 2.4%
Video capture 21 0.7%

Arbitrary code execution Native code 775 24.6%
Linux commands 563 17.9%

Remote conn. Remote connection 89 2.8%

Table 5.8: Volume of apps accessing / reading PIIs or showing potentially harmful behaviors.
The percentage is referred to the subset of triaged packages (N = 3; 154).

connect to, and analyzing the types of private information they could disseminate from user

devices. To understand the ecosystem of data collection by pre-installed apps, we studied

where the data that is collected by these apps makes its first stop. We use the fully qualified

domain name (FQDN) of the servers that are contacted and use the web crawling and text min-

68

5.4. BEHAVIORAL ANALYSIS

Organization # of apps # of domains

Alphabet 566 17052
Facebook 322 3325
Amazon 201 991
Samsung Electronics 187 571
Verizon Communications 171 320
Twitter 137 101
Microsoft 136 408
CloudFront 121 711
Adobe 116 302
AppsFlyer 98 10
Xiaomi 95 200
comScore 86 8
AccuWeather 86 15
MoatInc. 79 20
Appnexus 79 35
Baidu 72 69
Criteo 70 62
PerfectPrivacy 68 28
The Trade Desk 66 17

Other Advertising and Tracking Service (ATS) 221 362

Table 5.9: Top 20 parent ATS organizations by number of apps connecting to all their associated
domains.

ing techniques described in our previous work [Raz+18] to determine the parent organization

who own these domains.

The Big Players. Table 5.9 shows the parent organizations who own the most popular do-

mains contacted by pre-installed apps in the Lumen dataset. Of the 54,614 domains contacted

by apps, 7,629 belong to well-known Advertising and Tracking Services (ATS) [Raz+18]. These

services are represented by organizations like Alphabet, Facebook, Verizon (now owner of

Yahoo!, AOL, and Flurry), Twitter (MoPub’s parent organization), AppsFlyer, comScore, and

others. As expected, Alphabet, the entity that owns and maintains the Android platform and

many of the largest advertising and tracking services (ATS) in the mobile ecosystem [Raz+18],

also owns most of the domains to which pre-installed apps connect to. Moreover, vendors who

ship their devices with the Google Play Store have to go through Google’s certification pro-

gram which, in part, entails pre-loading Google’s services. Among these services is Google’s

own com.google.backuptransport package, which sends a variety of information about the

user and the device on which it runs to Google’s servers.

Traffic analysis also confirms that Facebook and Twitter services come pre-installed on

many phones and are integrated into various apps. Many devices also pre-install weather

apps like AccuWeather and The Weather Channel. As reported by previous research efforts,

69

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

these weather providers also gather information about the devices and their users [Ren+18;

Raz+18].

5.4.3 Manual Analysis: Relevant Cases

We used the output provided by our static and dynamic analysis pipeline to score apps and

thus flag a reduced subset of packages to inspect manually. Our goal here was to confidently

identify potentially harmful and unwanted behavior in pre-installed apps. Other apps were

added to this set based on the results of our third-party library and permission analysis per-

formed in Sections 5.2 and 5.3, respectively. We manually analyzed 158 apps using standard

tools that include DEX disassemblers (baksmali), dex-to-java decompilers (jadx, dex2jar), re-

source analysis tools (Apktool), instrumentation tools (Frida), and binary analysis frameworks

(radare2 and IDA Pro) for native code analysis. Our main findings can be loosely grouped into

three large categories: 1) knownmalware; 2) potential personal data access and dissemination;

and 3) potentially harmful apps. Table 5.10 provides some examples of the type of behaviors

that we found.

Known Malware

Triada. We found a variant of the infamous Android Triada banking trojan pre-installed in a

Samsung SM-N9600 coming from users in Brazil (package name: com.zotoo.factorymode).

The sample is modular and fairly complex. We only conducted a superficial analysis and ob-

served behaviors that include leaking of PII and personal data (SMS, call logs, contact data,

stored pictures and phone’s recording data), persistence after reboot, and downloading of ad-

ditional stages. The sample roots the device to install additional apps, though our library failed

to detect it as rooted. This is not the first time that a member of the Triada family has been

detected pre-installed, though the previous case we are aware of affected low-end Android

phones [Dr ; Tri] Android phones.

Rootnik. We found variousmalware samples on a non-rooted Huawei Hol-U19 phone coming

fromMyanmar. Themost eye-catching (because of its complexity) turned out to be a variant of

thewell-known rootnik family [Rooa] located inside two packages named com.android.backup

and com.android.newbackup. It gains root access to the device (again, our library does not

detect it as rooted) and then leaks PII and installs additional apps. It uses several anti-analysis

and anti-debugging techniques tomake code analysis more difficult. We found 6moremalware

samples in the same phone that we mapped to recent families: Xinyin (PUP/Adware), Ztorg

(SMS Trojan), Triada, and Iop (PUP/Adware). The relationship between all these samples is

70

5.4. BEHAVIORAL ANALYSIS

Type Family Device(s) (Country) Behavior

Malware
Triada Samsung SM-N9600 (BR) Banking Trojan. Leaks PII and personal data (SMS,

call logs, contact data, stored pictures and videos).
Downloads additional stages. Roots the device to
install additional apps.

Rootnik [Rooa] Huawei Hol-U19 (MM) Gains root access to the device. Leaks PII and in-
stalls additional apps. Uses anti-analysis and anti-
debugging techniques.

GMobi [Gmoa; Ups] Micromax D303 (RU)
Polytron R2452 (ID)
Leagoo Z5 (VT)
Asus Zenfone 2 Laser (IN)
Fly IQ4416 (UA)
Micromax A177 (IN)

Gmobi Trade Service. Leaks PII, including CPU
serial number and MAC address, geolocation, in-
stalled packages and emails. Receives commands
from servers to (1) send an SMS to a given number;
(2) download and install an app; (3) visit a link; or
(4) display a pop-up.

Potentially
Dangerous

Rooting app Samsung T8055 (VT) Exposes an unprotected receiver that roots the de-
vice upon receiving a telephony secret code 9527
(via intent or dialing *#*#9527#*#*).

Blocker Sony Xperia X F5121 (AR)
Sony Xperia X Compact (ES)
Sony Xperia XZ2 Compact (DE)
Sony Xperia XZ3 H8416 (UK)

If the device does not contain a signed file in a
particular location, it loads and enforces 2 black-
lists: one containing 103 packages associated with
benchmarking apps, and another with 56 web do-
mains related to phone reviews.

Spyware /
Tracking

Truecaller ASUS Zenfone 3 and 3
Max (ES, FR, SK)

Sends PII to its own servers and as third-party
ATSes such as AppsFlyer, Twitter-owned MoPub,
Crashlytics, inMobi, Facebook, and others. Uploads
phone call data to at least one of its own domains.

Metro Name ID Metro PCS Phones (US) Sends PII to domains owned by Metro PCS and its
own analytics servers. Embeds Piano, a media audi-
ence and engagement analytics service that tracks
user’s installation of news apps and other partners
including those made by CNBC, The Daily Beast,
Bloomberg, TechCrunch, The Economist, among
others, the presence of which it reports to its own
domains.

Adups [Adu] Low-end phones from 55
vendors (worldwide)

FOTA app. Collects and shares private and PII with
their own servers and those of third-party ATS do-
mains, including Advmob and Nexage.

Stats/Meteor OPPO P9 Pro (TH) Redstone’s FOTA service. Uses dynamic code up-
loading and reflection to deploy components lo-
cated in 2 encrypted DEX files. Leaks around 50
data items that fully characterize the hardware, the
telephony service, the network, geolocation, and
installed packages. Performs behavioral and perfor-
mance profiling, including counts of SMS/MMS, call
logs, bytes sent and transmitted, and usage stats and
performance counters on a package-basis. Silently
installs packages on the device and reports what
packages are installed / removed by the user.

Table 5.10: Examples of relevant cases found after manual analysis of a subset of apps. When
referring to leaks, the term PII encompasses items such as those enumerated in Table 5.8 in the
categories “Telephony identifiers”, “Device settings”, and “Network interfaces.”

unclear: they all might have come pre-installed or, more likely, one facilitated the installation

of the remaining ones.

GMobi. We identified 6 cases of the GMobi malware family [Gmoa] pre-installed in various

phones manufactured by Asus, Leagoo, Polytron, Micromax, and Fly located in India, Vietnam,

Indonesia, Russia and Ukraine. The package names are com.trendmicro.freetmms.gmobi,

com.rock.gota, and com.redbend.dmClient. The first two are FOTA updating apps, whereas

71

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

the latter is Trend Micro’s Dr. Safety app. The packages deploy three key components, called:

com.gmobi.trade.ActionActivity, .ActionService, and .ActionMonitor. These three

modules jointly implement the so-called Gmobi Trade Service, which: (i) leaks a consider-

able amount of sensitive information from the device, including items often used for tracking

(IMEI, IMSI, phone number, CPU serial number, MAC address, etc.), geolocation, all installed

packages and emails; and (ii) receives commands from command and control servers and im-

plements four actions: (1) send an SMS to a given number with the text content provided in

the command message; (2) download and install an app; (3) visit a link; and (4) display a popup.

A July 2018 Wall Street Journal article reported on how the GMobi SDK is being used in some

emerging markets to perform systematic collection and transfer of PII and ad fraud. Technical

details can be found in [Ups].

Dangerous and Potentially Unwanted Apps

The LogUploaderProxy case. We analyzed a package named com.asus.loguploaderproxy

that we found pre-installed in 5 different Asus devices: a Zenfone ZC553KL, a ZenPad 3S 10,

a Zenfone Max Pro M1, a Zenfone 3 ZE552KL, and a Zenfone 4 Max ZC554KL. The devices

came from users in India, US, Spain and France. The app registers a broadcast receiver called

com.asus.loguploaderproxy.LogUploaderReceiver. This component is exported and pro-

tected with the custom permission asus.permission.MOVELOGS, which means that only apps

holding that permission can send intents to it.

It listens for 6 different types ofmessages (SETPROP, EXECADB, CATSYSTEMFILE, COMBINEKEY,

PERMISSIONS, INSTALL), though it only handles the first five of them programmatically (i.e., it

ignores INSTALL intents). The SETPROP intent requests the app to set a system property to a de-

sired value, both provided as arguments, by invoking android.os.SystemProperties.set().

The EXECADB intent executes the command passed as argument and returns the output. The

CATSYSTEMFILE intent executes the cat command with the file name passed as argument and

returns the output. The intent COMBINEKEY uses android.hardware.input.InputManager

to inject input events on other apps. Finally, the message PERMISSIONS grants to a package

named com.asus.loguploader a list of runtime permissions passed as arguments. This is

possible because com.asus.loguploaderproxy is granted the GRANT_REVOKE_PERMISSIONS

permission. We analyzed this second package and found out it is a bug reporting tool used

to upload different logs. The app grants itself the WRITE_EXTERNAL_STORAGE, READ_EXTERNAL

_STORAGE, READ_PHONE_STATE, ACCESS_FINE_LOCATION, and ACCESS_COARSE_LOCATION per-

missions. These are needed to send, together with the logs, device-specific information (IMEI,

72

5.4. BEHAVIORAL ANALYSIS

installed packages, firmware version, etc.) and its location.

The com.asus.loguploaderproxy can be leveraged by any attacker who tricks the user

into installing an appwith the asus.permission.MOVELOGS permission. Such an appwill then

be able to send intents and use it to execute any of the provided services.

Dial *#*#9527#*#* for rooting. We found an app named com.rd.user2root that came pre-

installed in a Samsung T8055 device. The app exposes a broadcast receiver that is activated

through an android.provider.Telephony.SECRET_CODE intent associated with the number

“9527”. This, in turn, runs an activity that modifies some key properties to effectively run in

root mode (specifically, persist.service.adb.enable and ro.debuggable are set to 1, and

ro.secure is set to 0.). The receiver is not protected through a permission, so any app can

effectively use this capability to root the device. The app is signed by an organization named

Jlink based on Shenzhen, China.

Blocker. We came across a package called com.sonymobile.pip that was found in 4 Sony

Ericsson devices: an Xperia X, an Xperia X Compact, an Xperia XZ2 Compact, an Xperia XZ3.

Their users came from Argentina, Spain, Germany and the UK. The app exposes a service and

a receiver. The service disables itself if the user is “authorized”, which is determined as true

if the service correctly decrypts a file named SOMCPrototypeProtectionKey using a private

RSA key located in the assets folder. The result after decryption is checked against a hardcoded

string (“01234567890123”). If the user is not authorized, then the service loads and applies two

blacklists for packages and domains, respectively. The first list contains 103 package names,

most of which are performance benchmarking apps. The service disables any package found

in the device that matches a name in the list. The second blacklist contains 56 domains related

with technology and phone reviews. The service leverages com.sonymobile.packetfilter

and adds one rule per domain to effectively block any traffic coming from or going to any of

these domains. The package also registers a receiver that subscribes to the BOOT_COMPLETED

and PACKAGE_ADDED events to run the blocking service. In all cases, the app certificate claims

to belong to Sony Ericsson Mobile Communications.

Extreme User Profiling

The libcore case. We analyzed a package named com.redstone.ota.ui found pre-installed

in an Alps phone coming from Bangkok. The app provides a FOTA service associated with

Redstone Sunshine Technology Co., Ltd. [Redb], a Beijing-based FOTA provider that “supports

550 million phone users and IoT partners in 40 countries” [Reda]. The package also exposes

four suspicious components called com.android.meteor.agent.library.AgentReceiver,

73

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

com.android.meteor.agent.library.AgentService, com.globe.android.stats.agent

.AgentService, and com.globe.android.stats.agent.AgentReceiverwith almost identi-

cal code components. The com.globe.android.stats.agent component loads a file called

libcore.jar located in the assets folder and performs a rudimentary integrity checking. It

then decrypts it using a custom encryption routine. The output is a DEX file that it is dynami-

cally loaded and executed. It contains various components that implement an extraordinarily

extensive fingerprinting of the device and user activities. It collects more than 60 parame-

ters that characterize the hardware (including CPU, RAM, screen and sensors), the telephony

service (SIM, IMEI, IMSI, line number, etc.), network information (network interfaces, SSID,

base station ID, signal strength, etc.), geolocation, and installed packages. Another compo-

nent implements what seems to be a fine-grained behavioral and performance profiler. This in-

cludes an hourly time series with counts of SMS, MMS, calls made and received, and bytes sent

and transmitted. It also implements usage statistics and performance counters on a package-

basis within a component called com.android.internal.os.PkgUsageStats. All in all, this

amount to hundreds of data items which are encapsulated in a JSON and then zipped and

shipped on a daily basis to two different hardcoded third-party server using a RESTful API:

g.sinfoon.com:40081 and 42.62.125.197:40081. The domain is tagged as part of the web

infrastructure of an operation by at least one anti-malware vendor (Forcepoint).

Overall, this seems to implement an analytics program that admits several monetization

strategies: from optimized ad targeting to performance feedback for both developers and man-

ufacturers. We emphasize that the data collected is not only remarkably extensive, but also

very far away from being anonymous.

The com.android.meteor.agent component follows an identical loading strategy, though

using a file called libcore64.jar located in the assets folder. The services contained in the

decrypted DEX file implement an app promotion scheme that silently installs packages on the

device under command. It also reports periodically what packages are installed and removed

by the user. The report and pull servers are different, and different from those used previ-

ously: mad.dwphonetest.com:58801 and 114.215.238.53:58801. The former is tagged as

“known infection source” in various malware lists. The IP was associated with the domain

hwdl.redstone.net.cn in 2016. It currently belongs to a Chinese AS (37963) associated with

Hangzhou Alibaba Advertising.

74

5.4. BEHAVIORAL ANALYSIS

Paid PII Leaking Partners

GMobi. In addition to the larger companies, there is a long tail of third-party ATSes that are

integrated into many pre-installed apps, or are pre-installed as an independent app that col-

lects information about users without their knowledge or consent. One notable example of

the case of the General Mobile Corporation (GMobi), a mobile ad tech company that also op-

erates a “performance-based ad platform that enables content monetization and global users

acquisition” with a reach of “150M installs base in more than 120 countries” [Gmob]. The

GMobi components come pre-installed with lower-end mobile devices such as those made by

Micromax, Intex, Lenovo, and some Samsung phones. GMobi services usually come in the

form of a pre-installed app called com.rock.gota, that seems just like a Firmware Over The

Air (FOTA) updater app. However, it actually connects to GMobi to leak sensitive device and

subscriber-related identifiers such as the operator information, IMSI, IMEI, device serial, An-

droid Advertising ID (AAID); MAC addresses of networking interfaces which can be used to

geo-locate users [Ftc]; as well as a full list of all apps installed on the device to GMobi’s ad-

vertising domains such as api.ads.go2reach.com and api.reachads.com. GMobi apps send

all of this information in plain-text HTTP and without any encryption or hashing, enabling

everyone in the path to be able to sniff this information with ease, risking further leakage of

important identifying information.

Adups. Similarly, Adups FOTA apps collect and share a wealth of private and identifying

information including phone number, IMSI, Android and device serial, and MAC addresses

with their own servers and those of third-party ATS domains including Advmob and Nexage.

Truecaller. Another notable example of these services is Truecaller, a phone dialer app that

comes pre-installed on some phones, including ones made by ASUS. This app sends the user’s

phone number, IMEI, IMSI, AAID, SMS address, operator information, device serial, and other

device and subscriber-related identifiers to its own servers as well as third-party ATSes such

as AppsFlyer, Twitter-owned MoPub, Crashlytics, inMobi, Facebook, and others. Moreover,

it uploads phone call data to at least one of its own domains. A similar dialer app called

Metro Name ID comes pre-installed on MetroPCS phones that is made by a company called

PrivacyStar. In addition to sending the user’s AAID, phone number, and IMSI to domains

owned byMetroPCS, it also sends the same information to its own analytics servers. Moreover,

it embeds another third-party service called Piano, a media audience and engagement analytics

service that tracks user’s installation of news apps and other partners including those made by

CNBC, The Daily Beast, Bloomberg, TechCrunch, The Economist, among others, the presence

of which it reports to its own domains.

75

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

5.5 A Case Study: Apps Accessing System Logs

Logging is a core part of software development.6 In development, logging the right things

can help find and fix bugs quickly. In a production environment, logging helps locate issues

that may occur when no other data is available. It also can be used to make sure a system is

running smoothly and monitor what it is doing. In the case of a crash, the system logs can

be useful to locate the root cause of the issue. Apps and system components running on the

Android platform have a shared system log. By default, apps can only read their own entries.

Only apps that are granted the android.permission.READ_LOGS permission can access the

full, unfiltered system logs. This permission has a signature|privileged protection level,

which makes it only available to system apps. These systems logs can contain arbitrary data:

apps are free to log at their own discretion and are given specific guidance by Google not to

log private information [Gooc].

However, anecdotal evidence shows that Google itself may log personal information of

users of the Google-Apple Exposure Notifications (GAEN), a framework developed jointly by

Google and Apple to implement contact tracing during the COVID-19 pandemic. The GAEN

framework broadcast anonymous rolling proximity identifiers (RPIs) that are later identified as

being a risky encounter for the person who observed the identifier if the emitter tested positive

for COVID-19. Third-party apps, specifically contact tracing apps developed by national health

authorities, could then rely on with this framework for their apps. Reardon et al. observed that

Google’s implementation of GAEN was logging the RPIs emitted by the user, the received RPIs

along with the nearby device’s randomized Bluetooth MAC address, and the risk assessment

warnings delivered to the user [Rea].

5.5.1 Logged PII in the Wild

We first organize a crowdsourcing campaign to examine at scale the presence of PII in real

users logs. We rely on the WebUSB API built into recent versions of Google Chrome [Weba],

and on an open source implementation of ADB in pure Javascript [Webb; Webc; Webd]. Using

these tools, we develop awebsite that is able to access users’ devices connected via USB and run

ADB command directly from Javascript, and therefore access the system logs directly from the

user’s web browser. We also develop a purpose built app to gather unique identifiers directly

from the users devices. This app is installed using the WebUSB interface when users agree to

participate in the study. We then use the output of this app to look for the presence of unique
6This work was conducted after the publication of our paper on pre-installed apps. In this section only, our

dataset of contains 89,147 unique devices and 1,247,447 unique apps.

76

5.5. A CASE STUDY: APPS ACCESSING SYSTEM LOGS

identifiers in the system logs. Note that we do not collect the raw system logs nor the list of

PII for privacy reasons. Rather, we report the numbers of times a given PII was spotted in the

logs.

We deployed this website on the 14th of March, 2022 up until the 21st of the same month.

During that time, we recruited volunteers through institutional mailing list and social net-

works, but also from specialized platforms such as Prolific [Pro] and Amazon Mechanical

Turk [Amab]. In total, 1,400 participants provided reports from 866 unique devices (based

on their build fingerprint) comprising 571 models from 46 manufacturers. As reported in Ta-

ble 5.11, the presence of PII in the system logs is common, despite Google’s recommendations.

We find occurrences of every single PII that we collect from our app. While some are rather

rare, such as the IMEI, present in only 1% of our participants’ devices, other are more frequent.

The Wi-Fi router MAC address for instance is present in 67% of the participants’ devices. This

state of affairs is concerning: should third-party apps be able to access the system logs, they

might be able to access private information.

Table 5.11: Number of devices with PII in their system logs

PII type Number Percent

Android ID 92 8%
Bluetooth MAC Address 138 11%
Bluetooth Name 841 69%
Bluetooth Scan MAC 26 2%
Bluetooth Scan SSID 26 2%
Email Address 198 16%
IMEI 16 1%
Phone Number 14 1%
Coarse Location 293 24%
Location 272 22%
Wi-Fi MAC Address 544 45%
Wi-Fi Router MAC 821 67%
Wi-Fi Router SSID 834 68%
Wi-Fi Scan MAC 177 15%
Wi-Fi Scan SSID 480 39%
Serial Number 50 4%

5.5.2 System Logs Exfiltration

Because of this, it is important to know exactly how many different entities that are poten-

tially able to access this data. We investigate whether there are some system apps that may

access the system logs, and leak them to the cloud. We cross check the build fingerprints of

the users’ devices that participated in our crowdsourcing campaign with our database of pre-

77

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

installed apps collected using Firmware Scanner. Our of the 866 unique build fingerprints, 315

are present in our database, from 2,015 users. We find 1,319 apps that request the READ_LOGS

permission on those devices. When grouping them by their package name and signing certifi-

cate, we find 237 groups. For each of these groups, we manually inspect the code of the latest

version.

We analyze automatically our subset of apps and look for the presence of the string logcat

in the code: we find 73 such apps. After manual inspection of the apps, we find 63 that run

logcat as a shell command. We manually inspect the code of these apps and find that 7 of

them filter the logs after retrieving them. Some apps look for a specific pattern (e.g., for a

specific package name or PID), triggered upon specific event (e.g., an app crash). However,

the rest of the apps do not filter anything and keep the full log. Among the apps that do not

filter the logs, we find 15 that save these raw logs directly on the SD card. This essentially

makes the logs available to any app that has the permission READ_EXTERNAL_STORAGE. More

worrying, we find 9 apps that send the raw logs on the Internet. In one case, the logs are send

to a Firebase instance, a third-party service operated by Google.

In total, we find 4,598 users of Firmware Scanner that have at least one of these apps that

save the raw logs on the SD card or upload them, installed on a system partition. Our analysis

reveal that this behavior is in some cases triggered upon a specific event, such as an app crash.

This is the case of the Google Feedback app which allow the user to attach the system logs

to the bug report sent to Google. We manually confirm that, if the user allows it, the full,

unfiltered logs are sent to Google servers. In other cases, the behavior may be triggered by

the reception of an intent with a specific action or extra, which hints at the presence of one

or more other apps that have the logic to trigger said behavior. The majority of these apps are

signed by the manufacturer of the device on which they were found pre-installed. However,

some of these apps are signed by third-party companies, such as Vodafone. We find cases

where the signing certificate does not give much useful information as to who is the company

behind it, such as C=IL, ST=il, L=TLV, O=Central antivirus, OU=antivirus, CN=Dror

Shalev or O=voiceservice, OU=translator.

Another example is the apps developed by Mobile Posse [Mob], a third-party advertising

company that was bought by Digital Turbine in February 2020 [Dtb]. We found 8 such apps

scattered across 68 unique devices. The app signing certificates of these apps indicate that

they were not developed by the OEM of the devices. We manually inspected the code of these

8 apps. All of the samples contain the same code that accesses the logs. The code explicitly

checks if the app has been granted the READ_LOGS permissions and, if so, runs logcat with

78

5.6. STUDY LIMITATIONS

the -d7 and saves the output. The logs are then converted into a JSON-formatted string and

sent as an HTTP POST request. While we were not able to confirm with complete certainty

the destination of this request, we found strong indications in the code that the logs are sent

to an AWS domain.

The app also contains a JSON-formatted string called “schedule” that appears to contain

data collection instructions, including which components are to be collected and at what fre-

quency. The schedule contains, among other things, the collect_system_log_schedule op-

erationwhich gives the logcat command to run: logcat -v time -d *:e". The other opera-

tions seem to instruct the apps to collect very sensitive information, such as the list of installed

apps, app usage, visited URLs, geographic and cell location, call history, signal strength, net-

work info, connection speed (with links to test upload and download speed), boot time, SMS

usage, battery status, and memory usage. This information would then be sent alongside the

logs to the aforementioned domain.

Overall, these results highlight again the lack of control of the supply chain of Android

devices. Google explicitly forbids apps from logging private data “unless it’s absolutely neces-

sary to provide the core functionality of the app” [Gooc], and has implemented tests as part of

the CTS to verify that this rule is followed by devices that seek Google’s certification. Despite

these efforts, we still find a widespread presence of PII in logs, which can then be accessed and

uploaded without any filtering whatsoever, in clear violation of the rules.

5.6 Study Limitations

Completeness and coverage. Our dataset is not complete in terms of Android vendors and

models, and we might miss some brands or models. We, however, cover those with a larger

market share, both in the high- and low-end parts of the spectrum. Our data collection process

is also best-effort. The lack of background knowledge and documentation required perform-

ing a detailed case-by-case study and a significant amount of manual inspection. In terms of

analyzed apps, determining the coverage of our study is difficult since we do not know the

total number of pre-installed apps in all shipped handsets. Further, we cannot rely on the

package name to reduce the number of samples as any actor can extend an open source app to

include deceptive or even malicious behaviors. We have found evidence of such practices in

our dataset.

Attribution. There is currently no reliable way to accurately find the legitimate developer

of a given pre-installed app by its self-signed signature. We have found instances of certifi-
7The -d option makes logcat dump the whole log buffer and exit immediately.

79

CHAPTER 5. PRE-INSTALLED APPS IN ANDROID DEVICES

cates with just a country code in the Issuer field, and others with strings suggesting major

vendors (e.g., Google) signed the app, where the apps certainly were not signed by them. The

same applies to package and permission names, many of which are opaque and not named

following best-practices. Likewise, the lack of documentation regarding custom permissions

prevented us from automatizing our analysis. Moreover, a deeper study of this issue would

require checking whether those permissions are granted in runtime, tracing the code to fully

identify their purpose, and finding whether they are actually used by other apps in the wild,

and at scale.

Package Manager. We do not collect the packages.xml file from our users’ devices as it con-

tains information about all installed packages, and not just pre-installed ones. We consider that

collecting this file would be invasive. This, however, limits our ability to see if user-installed

apps are using services exposed by pre-installed apps via intents or custom permissions. We

tried to compensate for that with a manual search for public apps that use pre-installed custom

permissions, as discussed in Section 5.3.4.

Behavioral coverage. Our study mainly relies on static analysis of the samples harvested

through Firmware Scanner, and we only applied dynamic analysis to a selected subset of 1,055

packages. This prevents us from eliciting behaviors that are only available at runtime be-

cause of the use of code loading and reflection, and also code downloading from third-party

servers. Despite this, our analysis pipeline served to identify a considerable amount of poten-

tially harmful behaviors. A deeper and broader analysis would possibly uncover more cases.

Identifying rooted devices. There is no sure way of knowing whether a device is rooted

or not. While our conservative approach limits the number of false negatives, we have found

occurrences of devices with well-known custom ROMs that were not flagged as rooted by

RootBeer. Moreover, we have found some apps that allow a third party to root the device on-

the-fly to, for example, install new apps on the system partition as discussed in Section 5.4.3.

Some of these apps can then un-root the phone to avoid detection. Under the presence of such

an app on a device, we cannot know for sure if a given package— particularly a potentially

malicious app— was pre-installed by an actor in the supply chain, or was installed afterwards.

5.7 Takeaways

In this chapter, we studied, at scale, the vast and unexplored ecosystem of pre-installed Android

software and its potential impact on consumers. This chapter has made clear that, thanks in

large part to the open-source nature of the Android platform and the complexity of its supply

chain, organizations of various kinds and sizes have the ability to embed their software in

80

5.7. TAKEAWAYS

custom Android firmware versions. As we demonstrated, this situation has become a peril to

users’ privacy and even security due to an abuse of privilege such as in the case of pre-installed

malware, or as a result of poor software engineering practices that introduce vulnerabilities

and dangerous backdoors.

81

Chapter 6

Evolution of the Permission System

“A change is as good as a rest.”

— Stephen King, Hearts in Atlantis (1999)

T
he Android permission system has been the focus of several studies over time, as

we highlight in Chapter 3.2 (page 30). However, most of these studies focus on its

limitations, or specific attacks, but not its evolution over time. One notable excep-

tion is the work by Zhauniarovich et al. [ZG16], but this paper was published in 2016, and the

Android permission system has gone through significant changes since then. In reality, the

Android permission system evolves, either to add new features for device manufacturers or

developers or to improve the security and privacy guarantees of the system. This translated

into additional permissions, and new flags, which allow refining the protection level of a per-

mission. In this chapter, we present an analysis of the temporal evolution of both the overall

number of Android permissions (§ 6.1), of protection level and permission flags (§ 6.2), and

highlight their impact on the permission granting algorithm in Android (§ 6.3). Finally, we

investigate the use of protection level flags by pre-installed apps in the wild (§ 6.4).

6.1 Temporal Analysis of AOSP Permissions

We extract the number of built-in permissions by parsing the manifest file of the open-source

framework app [Aosd], which defines those permissions for the system, for each major An-

droid release. The number of permissions kept increasing over time, going from 114 in Android

1.6 (API level 4, released in 2009) to 689 in Android 12 (API level 31, released in 2021). Figure 11

shows the number of permissions per Android version, including the breakdown per annota-

83

CHAPTER 6. EVOLUTION OF THE PERMISSION SYSTEM

0

200

400

600

1
.6

2
.0

2
.1

2
.2

2
.3

3
.2

.4

4
.0

.1

4
.1

.1

4
.2

4
.3

4
.4

5
.0

.0

5
.1

.0

6
.0

.0

7
.0

.0

8
.0

.0

9
.0

.0

1
0
.0

.0

1
1
.0

.0

1
2
.0

.0

Android version

N
u
m

b
e
r

o
f
p
e
rm

is
s
io

n
s

Permissions
 annotations

All permissions

No annotation

@deprecated

@hide

@removed

@systemapi

@testapi

Figure 11: Evolution of the number of AOSP permissions per Android release

tion. Not all of these permissions are available to all developers though: some are marked

as “Not for use by third-party apps” in the AOSP source code (e.g., the READ_LOGS permis-

sion which allows an app to get access to the system log files). In fact, out of the 689 official

permissions defined at API level 31, 305 permissions (44% of the total) have the @SystemAPI

annotation, which indicates that they are reserved for system processes. Furthermore, 506 per-

missions (73% of the total) have the @hide annotation which removes them from the publicly

available documentation. Among the other annotations is @removed which indicates permis-

sions that do not grant any special privilege anymore, and are kept for backward compatibility

only.

The increase in the number of permission is mainly due to the new features provided by the

Android OS, to simplify user interactions, or to fix privacy or security vulnerabilities that have

been uncovered. For instance, Android 8 introduced a new permission, ANSWER_PHONE_CALLS,

which allows an app to answer incoming phone calls programmatically [Andd]. Another ex-

ample is tristate location permissions, introduced in Android 10 [Andc; Andah]. With tristate

permissions, users can choose to deny a location permission (either ACCESS_FINE_LOCATION

or ACCESS_COARSE_LOCATION), to grant it only once, or all the time, instead of the previous

two choices, grant or deny. This behavior was further changed in Android 11: it is not possible

anymore to grant a location permission “all the time”. Instead, users can choose to grant the

permission only when the app is running in the background, to prevent apps from abusing the

permission and continuously tracking the user’s location [Andac; Andaa].

84

6.2. PERMISSION DEFINITION FLAGS

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
1.0

1.1

1.5 1.6

2.0

2.1

2.2

2.3

3.0

3.1

3.2

4.0 4.1 4.2

4.3

4.4 5.0 5.1 6.0 7.0 7.1 8.0 8.1 9.0 10.0 11.0 12.0

1 2 3 4 5 6
7 8

9 10 11 12 13
14

15 16 17 18
19

20 21 22 23
24

1
2

3
4 5 6 7

Figure 12: Protection level flags per major Android release. Each black number represents a
protection level flag, and each blue number a permission flag.

6.2 Permission Definition Flags

6.2.1 Protection Level Flags

The protection level of a given permission can be further adjusted using protection level flags.

There are 24 flags defined in the documentation [Andad] (this number includes the system flag

which is a deprecated synonym of the privileged flag). For each flag, we manually inspected

the source code of the Android package manager (which is open source) to understand their

role. Figure 12 shows the evolution of the number of flags over time (in black):

1 system [Dev]: old synonym for privileged. It allows a permission to be automatically

granted to a system app.

2 development [Dev]: development permissions can only be granted from the command

line using adb. The app still has to request the permission in its manifest.

3 appop [Appd]: it supports the AppOp service, introduced in 2012 [Appe]. This service

can be used to monitor “app operations”, i.e., what a given app does, and which resources

it uses (e.g., for battery usage statistics).

4 pre23 [Preb]: a permission with this flag will be granted at install time instead of at

runtime if the app targets an API level lower than 23 when runtime permissions were

introduced [Runb].

5 installer [Ver]: a permission with the installer flag will be automatically granted

to the installer app (i.e., the app responsible for installing packages).

6 verifier [Ver]: a permission with the verifier flag will be automatically granted to

the verifier app (i.e., the app responsible for checking the validity of a package, such as

its certificate).

7 preinstalled [Prea]: this flag allows any app installed on the system image to be

granted the permission automatically.

8 privileged [Prea]: this flag replaces the old system flag [Dev]. If an app is on a system

permission and requests a permission defined with this flag, then it is automatically

granted, even if it has a signature base protection type.

9 setup [Set]: a permission with this flag will be automatically granted to the setup wizard

85

CHAPTER 6. EVOLUTION OF THE PERMISSION SYSTEM

app.

10 ephemeral [Eph], renamed instant in 2017 [Insa]. Instant apps [Insb] can only be

granted permissions that have the instant flag.

11 runtime [Runa]: This flag forces the app to treat the permission as a runtime one, i.e.,

the app must display a popup to the user to ask for consent. If the app does not support

runtime permission, then the permission is not granted.

12 oem [Oem]: this flag was introduced to allow original equipment manufacturers (OEM)

to define their own permissions for their apps. The permissions must also be present in

an allowlist in /oem/permission/. To be granted such permissions, the requesting app

must be in the OEM partition (in /oem) and be signed with the same certificate as the

app defining the permission.

13 vendorPrivileged [Ven]: these permissions must be explicitly allowlisted by the ven-

dor, by adding them to XML files located in the /vendor/permission/ folder. In addi-

tion, the app requesting the permission must be signed with the same certificate as the

app defining the permission.

14 textClassifier [Texa]: the text classification is a feature introduced in Android 8.1 to

allow developers to use machine learning techniques to sort out text [Texb]. Permissions

with a textClassifier flag can be automatically granted to the system text classifier

app.

15 wellBeing [Comi]: permissions with this flag can be granted automatically to the well-

being app, as defined by the device manufacturer.

16 documenter [Comb]: permissions with this flag can be automatically granted to the

document manager app.

17 configurator [Comg]: permissions with this flag can be automatically granted to the

device configurator app.

18 incidentReportApprover [Comh]: permissions with this flag can be automatically

granted to the app responsible for sharing incidents and bug reports.

19 appPredictor [Comm]: permissions with this flag can be automatically granted to the

system’s app predictor, a feature introduced in Android 10.

20 companion [Comc]: permissionwith this flag can be automatically granted to the system

companion device manager service.

21 retailDemo [Comj]: permissions with this flag will be granted to the retail demo app

which is defined by the OEM.

22 recents [Coma]: permissions with this flag will be granted to the recent apps, i.e., apps

86

6.2. PERMISSION DEFINITION FLAGS

the user used most recently [Rec].

23 role [Comk]: permissions with this flag will be managed as development permissions

are, via grantRuntimePermission() or revokeRuntimePermission(), but will only be

manageable by role.

24 knownSigner [Comd]: permissions with this flag can also be granted to any app signed

by any of the certificates in the knownCerts array [Andae]. This feature was introduced

in Android 12 to grant signature level permissions regardless of their actual signature.

6.2.2 Permission Flags

In addition to protection level flags, permissions can use one or more permission flags. These

permission flags appear in blue in Figure 12. Here too, we manually inspected the source code

of the Android package manager to understand the role of permission flags. These are addi-

tional flags that are not related to the protection level. They are intended for OEMs to define

their own policy to allowlist apps that could be granted such permissions [Perf], or display

additional information to the user (e.g., the costsMoney flag for a permission that allows an

app to send SMS).These flags are not set when defining a permission but are used internally by

the package manager. Nevertheless, they can still have an influence on the decision to grant a

permission to an app or not, as we detail below.

1 costsMoney [Comf]: this indicates that granting this permission may cost the user

money (e.g., a permission to allow an app to send SMS).

2 installed [Comn]: this flag indicates that the app has been installed into the system’s

globally defined permissions.

3 removed [Come]: this flag indicates that the permissions has been removed from the

system, and is not enforced anymore. These permissions are kept for backward compat-

ibility as some apps could be checking if the permission was granted before calling an

API.

4 softRestricted [Comq]: this flag means that the permission should only be granted

to a permission that meets certain conditions, as defined by the system’s policy. If these

conditions are not met, then only a weaker form of the permission is granted.

5 hardRestricted [Comq]: this flag is similar to the softRestricted one, but if the app

does not meet the system’s criteria, then no permission is granted.

6 immutablyRestricted [Como]: this flag indicates that the allowlisting state of the per-

mission is evaluated only once at the installation time of the apps.

7 installerExemptIgnored [Comp]: this flag prevents the installer app from making an

87

CHAPTER 6. EVOLUTION OF THE PERMISSION SYSTEM

exception on the restriction of the permission.

6.3 Evolution of the Permission Granting Algorithm

In Section 2.2.2, we explained that the permission granting algorithm mainly depends on the

protection level of the permission. In reality, the many protection levels and permission flags

that exist thoroughly complicate the algorithm to decide if a permission should be granted to

an app or not. From a user perspective, the algorithm is simple: an app that requests access

to a permission should do so by asking the user to grant it, or not. However, as we will now

see, it is vastly more complicated, and the algorithm keeps gaining in complexity with new

Android releases.

Figure 13 summarizes this algorithm, taking into account protect levels and flags, from the

perspective of the package manager. Note that this figure shows a simplified version of the

granting algorithm, as we do not include flags that only apply to a specific category of apps

(e.g., installer or configurator), to avoid overcrowding the figure. The various existing

flags make the process much more complicated. Moreover, some of the protection level flags

allow for bypassing some of the restrictions put in place by the protection level of a permis-

sion. For instance, a pre-installed app could request and be granted any permission that has

the preinstalled flag, regardless of the protection level of the permission. There are other

similar examples, such as the privileged flag for system apps installed in a privileged folder

of a system partition. Overall, not only is the permission granting process significantly more

complex, but it also opens the door to potential security and privacy issues: system apps could

take advantage of these flags to get access to permissions they otherwise could not, as we will

explore in the next section.

88

End

Check
protection

level

Grant permission
at install time

Grant permission
at runtime

Do not grant
permission

User
consents

No

Yes

Perm has
runtime

flag

No

Yes

Perm has
pre23
flag

No

Yes

Signatures
match

Perm has
privileged

flag

No

Perm has
preinstalled

flag

Perm has
vendorPrivileged

flag

Perm has
oem
flag

App is
privileged

App is
preinstalled

App is
allowlisted
by vendor

App is
allowlisted
by OEM

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

YesYes

Yes

No

No

Signature

Normal

Yes

No

Introduced in Android 6

Introduced in Android 9

Introduced in Android 8

Start

Introduced in Android 10

Roles
match

App already
has perm

from group

Dangerous

Yes

No

To be introduced in Android 13

Perm has
knownSigner

flag

No

Cert in
knownCerts

array

Yes Yes

No

Introduced in Android 12

Perm has
softRestricted

flag

App
matches system's

policy

Grant weaker perm.
at install time

Yes

No &
softRestricted

Yes

No Perm has
hardRestricted

flag

No

Yes

No &
hardRestricted

Figure 13: Flow chart of the permission granting algorithm

CHAPTER 6. EVOLUTION OF THE PERMISSION SYSTEM

6.4 Protection Level Flags Usage in the Wild

Table 6.1: Number of unique permission definitions that use either protection level or permis-
sion flags, broken down by the vendor of the device on which the defining apps were found
(according to the build fingerprint). For readability, we only display the top 10 vendors, and
group all the others into the “Others” column.

Flag As
us

H
ua

w
ei

Le
no

vo

M
ot
or
ol
a

O
pp

o

Sa
m
su

ng

So
ny

Vi
vo

Xi
ao

m
i

ZT
E

O
th
er
s

1 system — — — — — — — — — — —
2 development 2 59 — — — 628 48 1 1 — 77
3 appop 8 — — 74 16 388 — 16 42 6 256
4 pre23 — — — — — — — — — — 1,230
5 installer 6 — — 74 16 366 — 16 42 6 256
6 verifier 2 — — 37 8 172 — 8 21 3 128
7 preinstalled 106 98 11 356 39 1,103 7 287 73 26 1,273
8 privileged 1,318 30,334 512 6,496 1,603 83,469 675 575 1,847 604 36,049
9 setup 4 — — 74 16 344 — 16 42 6 256
10 instant 94 94 40 94 54 128 44 40 74 54 367
11 runtime — — — — — — — — — — —
12 oem 1 — — — — 11 — — — — 3
13 vendorPrivileged 7 — — 74 16 377 — 16 42 6 259
14 textClassifier — — — — — — — — — — —
15 wellBeing — — — — — — — — — — —
16 documenter — — — — — — — — — — —
17 configurator — — — — — — — — — — —
18 incidentReportApprover — — — — — — — — — — —
19 appPredictor 1 — — 37 8 161 — 8 21 3 128
20 companion — — — — — — — — — — —
21 retailDemo — — — — — — — — — — —
22 recents — — — — — — — — — — —
23 role — — — — — — — — — — —
24 knownSigner — — — — — — — — — — —

We now investigate the use of those protection level flags in pre-installed apps, by relying

on the data collected by Firmware Scanner (Chapter 4, page 41). Specifically, we use the dataset

of 983,875 apps found pre-installed on non-rooted devices. For each of those apps, we parse

their manifest and extract the protection level of each of the custom permissions they define, by

looking for the android:protectionLevel attribute of the <permission> tag used to define

a permission.

Table 6.1 shows the results for the top 10 most common manufacturers in our dataset of

pre-installed apps, based on their build fingerprint. We group the other manufacturers in the

“Others” column and exclude potentially rooted devices. For each of those vendors, we show

the number of permission definitions (i.e., the number of times any pre-installed app defines

a custom permission) that make use of at least one protection level flag. Interestingly, we find

that half of the flags are in fact never used by any app in our dataset. This includes the most

recent ones, namely recents, role, and knownSigner which were introduced in Android 12,

90

6.4. PROTECTION LEVEL FLAGS USAGE IN THE WILD

which can explain the current lack of adoption of those flags. Other unused flags include flags

reserved for specific categories of apps, such as incidentReportApprover, which restrict a

permission to only the app responsible for sending bug reports, as defined by the OEM.

We find that the most used protection level flag is by far the privileged one. This flag al-

lows any privileged app (i.e., any app installed in the priv-app/ folder of any system partition)

to automatically be granted this permission, regardless of the protection level. Note that this

applies to any privileged app, including third-party apps that have been installed there either

during the manufacturing of the device or later by a FOTA component. This could potentially

create serious security and privacy issue, as such permission would be granted without any

user interaction or even awareness.

6.4.1 Custom Permissions Usage by Privileged Apps

Indeed, we find that apps signed by third parties request such custom permissions with the

privileged flag. Our method is the following. First, we get the set of privileged pre-installed

apps of a device on which we find at least one permission using the privileged flag. These

apps would be granted the permission, should they request it.1 Then, we use the Subject

field of the apps’ signing certificate to determine whether they are signed by a third party.

Specifically, we consider any app that has the vendor name in its Subject field to be a first-

party app.

Overall, we find that 13% of the pre-installed apps that would be granted custom permis-

sions with the privileged are not signed by the manufacturer of the device, but rather by a

third-party company. This percentage varies significantly within the top 10 manufacturers of

our dataset, going from less than 2% for Samsung (0.6%) or Huawei (1%), up to 20% or more

for Lenovo (20%), Asus (22%) or ZTE (27%). Interestingly, we find that in the overwhelming

majority of the cases (99%), third-party apps request permissions defined by other third-party

apps on the device. This could indicate the presence of actors of the supply chain taking ad-

vantage of their privileged position on the device to make available features to other apps they

installed, or even partnerships between stakeholders.

Some of those cases can easily be explained: the app com.google.android.setupwizard,

signed by Google, requests the com.google.android.setupwizard.PARTNER_SETUP permis-

sion with a signature|privileged protection level. This particular case would appear as a

third-party app requesting a privileged permission. However, we find cases that cannot be

1Note that it is theoretically possible for the protection level of the permission to have more than one flag,
which could prevent the requesting app from being granted the permission. However, we do not find any such
case in our dataset.

91

CHAPTER 6. EVOLUTION OF THE PERMISSION SYSTEM

explained this easily. For instance, we find a launcher app signed by the Sharp corporation

(jp.co.sharp.android.launcher3.simple) which requests a permission defined by the app

jp.softbank.mobileid.installer: jp.softbank.mobileid.permission.PACK_ACTIVITY

SoftBank Group is a Japanese finance company based in Tokyo which bought Vodafone Japan

in 2006 [Sof]. The com.verizon.settings.permission.RECEIVE_UPDATED_SETTING permis-

sion defined by the framework app of some TCL devices, is another example. Interestingly, in

these cases, the defining and requesting apps seem to belong to two different companies.

We could find several other similar examples, which highlight again not only the com-

plexity of the supply chain of Android devices but also the existence of partnerships between

the stakeholders. Note that the mere fact that third-party apps are relying on privileged cus-

tom permissions does not necessarily imply malicious intent. It does however create a risk

for privacy and security issues which warrants further investigation. We will study in detail

custom permissions, their usage, and the potential privacy and security risks that they create

in Chapter 7.

6.5 Takeaways

In this chapter, we presented an updated view of the evolution of the Android permission sys-

tem, both in terms of number of permissions but, crucially, in terms of its complexity. The

several new features which were introduced in the recent versions of Android vastly compli-

cate the process of granting a permission or not, and potentially allow system apps to share

data and resources more easily, including with third-party apps. Overall, this evolution opens

the door to more security and privacy abuses which, combined with the lack of control of the

supply chain we highlighted in Chapter 5, paints a worrying picture for end users.

92

Chapter 7

Analyzing Custom Permissions Behaviour

“HAL: I’m sorry, Dave. I’m afraid I can’t do that.”

— Stanley Kubrick, 2001: A Space Odyssey (1968)

T
he Android permission system possess an interesting feature: its extensibility.

Developers are allowed to create their own custom permissions, which they can

then use to protect the components their apps expose. The majority of previous

studies on the permission system overlooked custom permissions and their potential security

and privacy risks (see Chapter 3, page 27), with some notable exceptions [Bag+15; Bag+18;

Tun+18; Li+21]. In this chapter, we expend and complement the high-level analysis presented

in Chapter 5. Specifically, we empirically study the usage of custom permissions at large scale,

using a dataset of 2.2Mpre-installed and publicly available apps (§7.1). We first study the preva-

lence of custom permissions in the wild (§7.2), and show that violation of the naming conven-

tions for custom permissions are routinely broken (§7.3). Finally, we seek to understand the

purpose of these permissions. We develop tools, PermissionTracer and PermissionTainter,

dedicated to the analysis of custom permissions, and present several cases of potentially harm-

ful behaviors in the wild (§7.4).

7.1 Data Collection

We now describe our data collection and processing methodology.

93

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

Table 7.1: Number of unique apps (based on their MD5 hash) and custom permissions per data
source, with and without permissions associated with push notification services. We merge
the apps downloaded from AndroZoo with their market of origin if we consider said market in
our study (e.g., we merge AndroZoo apps downloaded from Google’s Play Store into a Google
Play set). Otherwise, we group them together as “AndroZoo.”

Origin Number
of apps

Number of permissions
requested defined all

Google Play 638,758 19,464 13,626 22,010
Tencent 94,443 11,610 7,013 12,591
APKMonk 23,774 1,037 402 1,108
Xiaomi Mi 21,613 6,381 3,852 6,838
Baidu 11,522 3,172 1,810 3,358
APK Mirror 9,696 2,106 852 2,246
Huawei 6,655 3,613 2,227 3,895
Qihoo 360 4,321 3,092 1,524 3,251
AndroZoo
(other stores) 217,639 9,814 6,195 10,660

Pre-installed 1,247,447 16,886 14,912 19,312

Total 2,234,506 46,556 37,743 52,468

7.1.1 Data Sources

We rely on two main data sources to gather a large-scale and representative dataset of Android

apps, including ones that came pre-installed, and ones that are published to appmarkets. These

two data sources, actively gathered from 2019 to 2022, are complementary and bring a holistic

perspective of apps exposing and requesting custom permissions.

Public app stores. We implemented a purpose-built crawler to download apps and their

associated metadata from several public app stores at scale: Google’s Play Store [Gplc], Ten-

cent [Tenb], APKMonk [Apkb], Xiaomi’s Mi Store [Mis], Baidu [Baib], APK Mirror [Apka],

Huawei [Huac], and Qihoo 360 [Qih]. We chose these app stores for their popularity, thus

giving us access to a representative picture of the Android ecosystem including and beyond

the Play Store [Wan+18b]. We complement this corpus with apps collected by the AndroZoo

project [Andr].1 We gather a total of 987,059 apps (see Table 7.1) through amulti-year crawling

campaign started in March 2019 until March 2022.

Pre-installed apps. In this chapter, we use a subset of the data collected by Firmware Scan-

ner (see Chapter 4, page 41 for details). This subset contains 1,247,447 pre-installed apps col-

lected from 58,540 users, representing 17,973 unique device models associated with 783 Origi-

nal Equipment Manufacturers (OEMs).

1We only collect apps fromAndroZoo that we do not already have from our other sources to increase our overall
coverage.

94

7.1. DATA COLLECTION

7.1.2 Methodology for Extracting Custom Permissions

We consider any permission to be custom if it never was in the official list of AOSP permission

for any Android release. We therefore start by listing the official AOSP permissions across

Android releases, by parsing the manifest of the open-source AOSP framework app [Aosc].

Then, to extract custom permissions, we parse the apps’ manifests and extract <permission>

tags for defined permissions, and both <uses-permission> tags and the android:permission

attributes of permissions protecting apps’ components for requested custom permissions. Us-

ing this methodology, we obtain 257,710 custom permissions in total, including both defined

and requested ones. Alongside the permission name, we also extract metadata related to the

app that defined or requests it (e.g., app’s package name and signing certificate), and informa-

tion about the permission itself (e.g., description field and protection level) to further study

the adoption of naming conventions, and developers’ willingness to document their custom

permissions.

Attribution. We leverage Google’s naming recommendation as a proxy to identify the party

responsible for the definition of custom permissions. For example, com.foo.PERMISSION has

the second-level domain foo.com, which should identify the author of the custom permission.

However, it is important to note that developers do not necessarily abide by this convention.

There is currently nothing preventing a developer from defining custom permissions with a

different package name than its app. Relying on extra signals such as the app’s signing cer-

tificate does not solve this issue, as apps in Android use self-signed certificates, and previous

work showed the existence of apps purposefully using false information in their certificate to

impersonate other companies [Gam+20]. Due to the lack of robust mechanisms to do sound

attribution of custom permissions, in this section, we rely on the naming convention as the

only way to potentially understand who defined a given permission. When available, we rely

on online documentation as a reliable source for (1) attributing permissions to app developers

or SDKs; and (2) inferring what service or data the permission is protecting. In some cases,

we manually inspect the package name of the app and the signing certificate to enhance our

attribution process.

Push notification services. Push notifications are messages displayed to the user, either

from a local app, or from a remote server even when their app is not running on the device.

Developers include a receiver in their app to receive the notifications, which they protect with

a custom permission, in order to prevent other apps from intercepting the messages from the

remote service. We identified several push notification services from companies such as Xi-

aomi [Pusg], Amazon [Pusa], and others [Pusf; Pusd; Gcmb; Puse; Pusb; Pusc]. Due to their

95

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

widespread use and its well-known and supposedly harmless purposes, we exclude 205,242

permissions associated with such services for the rest of the chapter.2 After applying this fil-

ter, we are left with 52,468 custom permission names, both requested and defined, that we

consider in the rest of this paper.

7.1.3 Ethical Considerations

In Section 7.4, we survey app developers making use of custom permissions to better under-

stand their rationale and the reasons why they include them using the developer contact details

available on Google Play. We treat this as sensitive data since it might have unexpected conse-

quences, e.g., for their current and future employment. We therefore only report statistical and

anonymized data, and do not store any information that could be used to identify a particular

developer or company. In both cases, we consulted our data collection protocols with IMDEA

Networks’ Data Protection Officer (DPO) and received approval from our institutional ethical

review board to conduct this survey.

7.2 Prevalence of Custom Permissions

Thepreliminary results reported in Table 7.1 suggest that there is a significant usage 3 of custom

permissions, both requested and defined, regardless of the type of app or its origin. However,

these numbers by themselves do not completely convey the scale and complexity of the custom

permissions ecosystem, especially the number of actors involved. This section measures how

widely defined and requested custom permissions are at the app- and market-level.

7.2.1 Definition of Custom Permissions

Figure 14 shows the increasing number of defined custom permission per API level targeted

by the app, i.e., as new Android versions get released. We do not plot the result for apps that

target an API level lower than 15, as less than 0.1% of current devices run such an old Android

version as of April, 2020 [Andp]. We note that the low number of permissions for API level 30

and up is due to the fact that our dataset only contains 85 apps targeting such API levels, all

origins included.

This figure reveals that the usage of custom permission seems to grow over time: between

API levels 15 and 25 (both included) it is of 3,463.5 permissions, and 5,938 permissions for API
2We note that it is technically possible for an app to create a permission which follows the syntax of a push

notification service permission for unrelated and potentially harmful purposes.
3For the sake of clarity, we say that an app uses a custom permission if it either requests or defines it, and clarify

the specific case when needed.

96

7.2. PREVALENCE OF CUSTOM PERMISSIONS

Requested custom permissions

Defined custom permissions

15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31

0

10k

20k

0

10k

20k

API level

N
u

m
b

e
r

o
f

p
e

rm
is

s
io

n
s

App's origin

Pre−installed

Qihoo 360

APK Mirror

APKMonk

Baidu

Google Play

Xiaomi Mi

Tencent

Huawei

Others

Figure 14: Number of custom permissions requested or defined per target API level, broken
down by the origin of the app

levels 26 to 31. We find that the proportion of apps defining custom permissions is much lower

than the proportion of apps requesting them: only 4% of apps available on app stores define

at least one custom permission versus 26% of pre-installed apps. In fact, the Android Open

Source Project allows manufacturers to expose their own features and services to other apps

using custom permissions to control the access.

By comparing the device fingerprint reported by Firmware Scanner with the prefixes of the

custom permissions exposed by pre-installed apps, we could label 63% as OEM-defined. While

all OEMs expose custom permissions in their handsets, Samsung, Huawei and Amazon devices

tend to define more than the average. In fact, Samsung is the OEM that exposes the largest

number of features with 4,822 permissions. Just Samsung’s Knox framework–a pre-installed

security framework that offers features like access control, mobile device management, and

VPN capabilities [Samb; Knoa; Knob]—is responsible for 109 permissions.

Yet, the reasons why custom permissions exist are diverse as already reported by Gamba

et al.[Gam+20]. For example, there are 34% custom permissions related to companies offer-

ing third-party SDKs [Ma+16; Raz+18; Fea+21] offering analytics services (e.g., Baidu, Apps-

Flyer) or social network integration (e.g., Facebook, Twitter), amongst others. For example,

the permission com.twitter.android.permission.AUTH_APP is used for allowing users of a

given app to log in through Twitter, and com.baidu.permission.BAIDU_LOCATION_SERVICE

is related to Baidu’s map services, according to their official documentation. Another inter-

esting app of custom permissions is enabling IoT platform integration. We find 6 custom

permissions defined by Amazon to allow app developers to communicate with Amazon de-

vices: e.g., amazon.speech.permission.SEND_DATA_TO_ALEXA for Alexa devices [Amad] and

com.amazon.device.permission.COMRADE_CAPABILITIES for Fire TV [Amae]. We also find

51 custom permissions related to Google’s Android for cars [Ands], which allow accessing car-

97

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

com.android.contacts

com.android.email

com.android.mms

com.android.phone

com.android.settings

com.android.systemui

0 10 20 30 40 50

Number of defined custom permissions

Figure 15: Number of custom permissions defined by core Android components across 783
OEMs and 17,973 device models

specific information such as the speed of the vehicle (android.car.permission.CAR_SPEED)

or control of the lights (android.car.permission.CONTROL_CAR_INTERIOR_LIGHTS).

We also find that core Android components, such as the default dialer app (of package name

com.android.phone), the system UI app (com.android.systemui), or the main framework

app (android). Such apps are open-source, and can therefore easily be modified by phone

manufacturers, to add new features for instance. We show in Figure 15 a boxplot of the number

of custom permissions defined by such apps. In general, we find custom permissions defined

by all of the core Android components. Note that we do not include the android app in this

plot for readability reasons: while the median number of custom permissions by the android

app is only of 1 permission, we find a version on a Samsung device that defines as many as

664 custom permissions. This highlights the level of customization some vendors add to their

version of Android, and indicate a potentially high number of features made available by pre-

installed apps to other apps, which could include publicly available apps and other third-party

apps.

Protection level analysis

Aswith regular AOSP permissions, custompermissions can set different protections to regulate

its access. Figure 16 shows the protection level of defined custom permissions per app type.4

This figure shows that the most popular protection level used by app developers when defining

custom permissions is signature, with 39% of the exposed custom permissions on average.

When considering exposed custom permissions with a signatureOrSystem protection level,

this proportion rises up to 86%. This means that the majority of custom permissions will only

be granted to apps that share a signing certificate with the defining app as we will study at the
4We note that the protection level signatureOrSystem is deprecated since API level 23 (Android 6.0) [Andad]

and it is semantically equivalent to the signature base protection type with the privileged flag, which allows an
app installed on a system partition to be automatically granted the permission when requested [Prea].Starting in
Android 8, a pre-installed app must also be allow-listed by the manufacturer to be granted a permission with the
privileged flag [Perf].

98

7.2. PREVALENCE OF CUSTOM PERMISSIONS

0%

25%

50%

75%

100%

APKM
on

k

G
oo

gl
e

Pla
y

APK M
irr

or

H
ua

w
ei

Bai
du

Pre
−i

ns
ta

lle
d

Te
nc

en
t

Q
ih
oo

 3
60

Xia
om

i M
i

O
th

er
 m

ar
ke

ts
P

e
rc

e
n

ta
g

e
 o

f
p

e
rm

is
s
io

n
s Base level

signatureOrSystem

signature

dangerous

normal

Figure 16: Base protection level usage per origin of the app for defined custom permissions.

end of this section.

More concerning is the fact that 11% of the permissions are definedwith the normal protec-

tion level. In fact, all OEMs expose at least one custom permissions with a normal protection

level: Motorola, HTC and Xiaomi define a total of 170, 193, and 269 custom permissions with

the normal protection level. For Samsung, this number goes as high as 867 custom permissions.

Therefore, any app installed on the same device will automatically get granted these permis-

sions at installation time and, consequently, to any resource protected by said permissions,

unless the developer exposing the permission implements other access control mechanisms

programmatically (e.g., by checking the package name of the calling app). Unfortunately, the

lack of public information about the actual purpose of these custom permissions (or the type of

data or service that they protect) prevents us from automatically assessing their potential risks.

Hypothetically, normal custom permissions might leave completely unprotected sensitive data

as we will further study in Section 7.4.

7.2.2 Requests of Custom Permissions

Figure 14 shows the number of requested custom permissions per target API level and ori-

gin of the app. In general, 30% of apps published in public app markets request at least

one custom permission but this number is significantly higher (62%) for pre-installed apps.

When ranking them by their popularity, we can observe clusters of custom permissions that

are significantly more requested than the rest. For example, GMS permissions are requested

by more than 10,000 apps and they enable functionalities related to Google Sign-In [Plaa]

(com.google.android.gms.auth.api.signin.permission.REVOCATION_NOTIFICATION), in-

app purchases [Bil] (com.android.vending.BILLING), and the Play Install Referrer Library [Fin;

Plab] (com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_SERVICE).

Other popular permissions, such as com.oppo.launcher.permission.READ_SETTINGS or

com.anddoes.launcher.permission.UPDATE_COUNT are associatedwith launcher apps. These

last two permissions seem to allow developers to interact with the launchers to display noti-

99

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

Table 7.2: Top 20 most requested custom permissions in our dataset, in order. We infer the
creator of those permissions using the Subject field of the signing certificate of the APKs

Permission name Creator

com.samsung.android.providers.context.permission.WRITE_USE_APP_FEATURE_SURVEY Samsung
com.wssnps.permission.COM_WSSNPS Samsung
com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_SERVICE Android
com.sec.android.diagmonagent.permission.DIAGMON Samsung
com.sec.android.settings.permission.SOFT_RESET Samsung
com.sec.android.diagmonagent.permission.PROVIDER Samsung
com.samsung.android.permission.SSRM_NOTIFICATION_PERMISSION Samsung
com.sec.phone.permission.SEC_FACTORY_PHONE Samsung
com.google.android.providers.gsf.permission.READ_GSERVICES Android
com.samsung.android.bixby.agent.permission.APP_SERVICE Samsung
com.google.android.gms.auth.api.signin.permission.REVOCATION_NOTIFICATION Android
com.android.vending.BILLING Android
com.sec.android.app.twdvfs.DVFS_BOOSTER_PERMISSION Samsung
com.sec.imsservice.PERMISSION Samsung
com.sec.imsservice.READ_IMS_PERMISSION Samsung
com.sec.android.provider.logsprovider.permission.READ_LOGS Samsung
com.sec.android.provider.badge.permission.READ Samsung
com.samsung.cmh.data.READ Samsung
com.sec.enterprise.knox.MDM_CONTENT_PROVIDER Samsung
com.samsung.android.launcher.permission.READ_SETTINGS Samsung

0.0

0.5

1.0

0 10 100 1K 10K 100K 1M

Number of requesting apps per permission (log scale)

E
C

D
F

Defining app's origin Any Pre−installed App stores

Figure 17: Number of apps requesting custom permissions in our dataset, broken down by the
origin of the defining app

fication counts above the icon for their app (e.g., a messenger app could display the number

of unread messages in the launcher). Table 7.2 shows the top 20 most requested custom per-

missions, along to their potential creator (we infer that information from the Subject field of

the app signing certificate). 4 of these custom permissions seems to be associated with Google

(including the 3 we previously presented); all of the others with Samsung. Other less popular

cases are Amazon’s and Android’s Cars permissions, requested by 15,622 and 4,136 apps, re-

spectively. We note, however that while 71% of the apps requesting Amazon’s permissions are

available on the Google Play Store, 100% of the apps requesting Android Cars permissions are

pre-installed.

100

7.2. PREVALENCE OF CUSTOM PERMISSIONS

OEM-specific custom permissions

Figure 17 shows that custom permissions defined by pre-installed apps are likely to be re-

quested by more apps than those defined by publicly available apps. Specifically, the median

number of requesting apps per permission is of 36 and 587 for publicly available and pre-

installed apps, respectively. The relative popularity of custom permissions defined by priv-

ileged pre-installed apps confirms the importance of inspecting potential vulnerabilities on

pre-installed apps, as we will further discuss in Section 7.4.

Figure 18 provides a more detailed perspective on how the OEM-specific permissions for

the top-10 Android OEMs are requested by publicly available apps.5 For completeness, we in-

clude Google Mobile Services permissions exposed by pre-installed apps on 87% of the devices

in our dataset. We group the remaining vendors under the “Others” label. We can infer two

things from this figure: (i) a large number of permissions exposed by pre-installed apps are, in

fact, requestedmainly by pre-installed apps, which could indicate the existence of partnerships

between actors of the supply chain of Android devices; and (ii) apps from all app stores do re-

quest permissions exposed by device vendors. For example, a total of 43,517 apps in our dataset

request Samsung Knox permissions, but 98% of them are other apps pre-loaded on Samsung

devices. Those distributed through Google Play and requesting Knox services are mostly pro-

fessional apps like Cisco Webex, and MDM solutions. This confirms that pre-installed apps are

responsible for the exposure of the most widely-demanded permissions, and that this could

potentially expose sensitive data and system resources to publicly available apps, either by

mistake or intentionally.

Market-level differences

At the market-level, we see that apps published in Xiaomi Mi, Tencent and Huawei app mar-

kets are more likely to request custom permissions than apps published in Google Play. We

note that some markets are more recent than others,6 and this might explain why the usage

of custom permissions by apps published in Huawei’s market is higher in recent API levels.

Nevertheless, the definition of custom permissions in Android apps grows with new Android

releases: the median number of requested custom permissions between API levels 15 and 25

(both included) is 5,303.5 per API level, while for API levels 26 to 31 (478,244 of all apps in our

dataset), the median rises up to 9,550 requested custom permissions per API level.

Table 7.3 shows the most requested permission (grouped by their SLDs) for apps publicly
5To measure OEM popularity, we rank them by the number of users with devices of a given OEM in our dataset.

We find that the top-10 vendors in our dataset is correlated to publicly available market shares [Appf].
6For instance, the Huawei app store was only launched globally in 2018 [Huad]

101

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

Table 7.3: Most popular second level domains for custom permissions defined or requested by
apps on public app stores

Origin Most popular SLD
requested perms defined perms

Google Play google.com google.com
Tencent google.com tencent.com
APKMonk google.com sina.com
Xiaomi Mi permission.android tencent.com
Baidu permission.android lechuan.com
APK Mirror google.com google.com
Huawei permission.android huawei.com
Qihoo 360 permission.android tencent.com
Others permission.android permission.android

available on these public app stores. This table stresses the popularity of Google permissions,

which seems to be the most popular requested permissions in half of the markets we cover. In

particular, Google apps present on Google Play (including very popular ones such as YouTube,

GMail or the Google Play Services app which is also pre-installed on any Google-certified de-

vice) define as many as 183 custom permissions with the com.google prefix, which makes

the google.com SLD group the most popular in that app store. However, we find that the

android.permission prefix is the most requested permission in app stores from China. For

instance, the android.permission.DOWNLOAD_WITHOUT_NOTIFICATION permission (which is

not part of AOSP) is requested by 5,757 apps on the Baidu app store alone. Permissions seem-

ingly from Google (i.e., in the google.com SLD group) are still in the most popular ones in

Chinese markets, but followed by well-known Chinese technology companies such as Tencent

or Sina Corporation. This table shows a clear geographical divide between app stores located

in China in terms of naming conventions and permissions’ popularity.

Signature permissions

One final aspect to consider is the link between exposed and requested custom permissions

with signature level, as they can be automatically granted during installation time. When a

custom permission has a signature or signatureOrSystem protection level, we check the

certificate(s) of both the defining and requesting app, and identify cases where both apps

have at least one certificate in common, to reproduce the behavior of the Android OS. In

particular, we focus on custom permissions that are defined by pre-installed apps, as those

apps are inherently more trusted by the operating system [Gam+20]. Again, we find that

custom permissions defined by pre-installed apps are mostly requested (and, in this case,

granted) to other pre-installed apps: out of the 586,354 apps that would be granted signature

102

7.2. PREVALENCE OF CUSTOM PERMISSIONS

13

0

1
0
0
0

20
00

3000

14
015

0

16

0

17

0

18

0

19

0

20

0

21

0

22

0

1

0

2

0

1
0
0
0

3
0

4
0

50

6

0

1
0
0
0

20
00

70

8
0 9

0

10

0

11

0 1000

2000

3000

4
0
0
0

1
2

0

Origin of defining apps

Asus

Huawei

Lenovo

Motorola

Oppo

Samsung

Sony

Vivo

Xiaomi

ZTE

Others

GMS

Origin of requesting apps

Pre−installed
Google Play
Qihoo 360
APK Mirror

APKMonk
Baidu
Huawei store
Xiaomi Mi

Tencent
Other stores

Figure 18: Number of requested permissions defined by pre-installed apps, broken down by
the origin of the requesting app (left part) and the vendor for pre-installed apps (right part).

or signatureOrSystem permissions, 99.9% of them are pre-installed. We find 13,717 apps

(2.3% of the total) on public markets that would also be granted such permissions (note that

some apps can be both pre-installed and available on public app stores, Google Chrome for

instance). In particular, we find that some Facebook apps, among others, the official Face-

book app (com.facebook.katana) and Facebook Messenger (com.facebook.orca) request

custom permissions defined by pre-installed apps sign by the same certificate (hence most

likely Facebook apps too). Such permissions include com.facebook.appmanager.ACCESS or

com.facebook.receiver.permission.ACCESS. These permissions are not documented pub-

licly and do not include a description when defined by the Facebook apps. However, such

permissions could be related to the partnerships between Facebook and major mobile manu-

facturers revealed in 2018 by the New York Times [New].

103

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

Figure 19: Phylogenetic tree of custom permissions requested by at least 2,000 apps each,
grouped by their second level domain. The colors represent the most common SLDs:
com.google, com.huawei, com.sec, com.samsung Note that the com.sec prefix might
in fact be related to Samsung’s Knox API [Knoa]

7.3 Naming and Definition Conventions

While Google recommends app developers defining custom permissions to follow a clear nam-

ing convention and adding a description of the purpose of the custom permission, there is no

enforcement. Figures 19 and 20 show the scale and complexity of the problem for a subset of

custom permissions that are requested by at least 2,000 apps in our dataset. Using the attri-

bution methodology described in Section 7.1.2, we cluster these popular custom permissions

into 67 second-level domains (SLDs). However, when considering the totality of our dataset of

custom permissions, we find a total of 11,209 SLDs groups, the majority of which (65%) only

contain one custom permission, and 94% five or less. Without proper and verifiable naming

conventions, nor a clear description of the services and data protected by custom permissions,

users have no ability to take informed decisions when granting custom permissions to apps.

In fact, any app developer could confuse users by (intentionally) impersonating well-known

prefix, such as com.google or com.samsung. In this section, we empirically measure whether

104

7.3. NAMING AND DEFINITION CONVENTIONS

.conv

.dexonpc

.miui

.oppo

.provider

.sidesync

.sstream

.telecom
android.manifest

android.miui

com.amazon

com.anddoes com.bbk

com.bst

com.cequint

com.coloros

com.diagmondm

com.dsi com.facebook

com.fede

com.fingerprints

com.gsma

com.hiya com.infraware

com.lenovo

com.lge

com.mediatek com.meizu

com.mirrorlink

com.miui

com.motorola

com.msc com.nttdocomo

com.oppo

com.osp

com.qihoo360

com.qualcomm

com.samsungtest

com.sgmc

com.skt

com.slideme

com.sonyericsson

com.sonymobile

com.sprint

com.tencent

com.vcast com.verizon

com.vivo com.vodafone

com.wsomacp

com.wssnps

com.xiaomi org.adwfreak

org.fidoalliance

org.gsma

org.simalliance

samsung.android

Figure 20: Treemap of custom permissions requested by at least 2,000 apps each, grouped
by their second level domain. For readability, we do not include the top 10 most common
SLDs. The excluded prefixes seems to be associated with Samsung (com.samsung, com.sec,
.sec), Google (com.google), Huawei (com.huawei, .huawei), HTC (com.htc), and other en-
tities which we could not identify (org.adw, android.permission, com.android)

app developers exposing permissions follow recommended practices.

7.3.1 Naming Convention Violations

We find naming convention violations to be widespread. Table 7.4 lists the percentage of def-

initions that fail to adhere to the naming convention, broken down per origin. The percentage

of permission definitions that fail to adhere to the naming convention varies from 8% to 33%

on public app stores. For pre-installed apps, almost half (47%) of custom permission definitions

break the naming convention.

An example of such a violation is the com.qualcomm.permission.QCOM_AUDIO permis-

sion, defined by the com.verizon.obdm_permissions app. Not only are the SLDs of the pack-

age name (qualcomm.com, a chipsetmanufacturer) and of the custompermission (verizon.com,

a network operator) different, but the Subject field of the signing certificate of the app men-

tion a third entity, Google. In that case, it is impossible to attribute with certainty the custom

105

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

Table 7.4: Number of custom permissions definitions that do not follow the naming convention.
Note that an app defining multiple custom permissions will be counted multiple times in this
table.

Origin # of
definitions

of bad
definitions Percentage

Google Play 63,193 7,087 11.2%
Tencent 9,902 1,629 16.5%
APKMonk 3,060 298 9.7%
Xiaomi Mi 5,898 1,219 20.7%
Baidu 4,703 612 13%
APK Mirror 19,543 1,654 8.5%
Huawei 3,392 464 13.7%
Qihoo 360 1,999 297 14.9%
AndroZoo
(other stores) 28,636 9,478 33.1%

Pre-installed 2,237,585 1,045,815 46.7%

Total 2,373,124 1,067,421 45%

permission to any of these entities.

Some violations are due to developers choosing to use the same prefix as AOSP permis-

sions, which can also confuse the end user into granting a permission, thinking it was created

by the operating system, such as android.permission.DOWNLOAD_WITHOUT_NOTIFICATION,

or android.permission.RECORD_VIDEO. In total, we find 722 custom permissions that use the

android.permission prefix. The high number of permissions using AOSP prefixes is surpris-

ing as OEMs are explicitly forbidden from adding permissions in the android.* namespace as

part as their customization of the OS [Andh]. Yet, we find that 87% of the apps defining at least

one of the 722 custom permissions that we identified are pre-installed apps, which could be a

breach of the CDD. This issue is still present in recent versions of Android: we find that 226 of

these permissions (31% of the total) are defined by apps pre-installed on devices running An-

droid 11 or 12. Anecdotally, we observe instances of apps requesting custom permissions with

names that are similar to those of AOSP permissions, but with typos. We find, for instance, cus-

tom permissions that include the string andorid instead of android, CORSE_LOCATION instead

of COARSE_LOCATION, or RUN_TIME instead of RUNTIME.

We also find evidence that suggests that some naming violations might be due to em-

bedded third-party SDKs or components integrated in the app: if an app embeds an SDK

that defines a custom permission, that permission will be in the manifest of the host app

(as explained in Chapter 2.2, page 20), and most likely result in a violation of the naming

convention (unless both the app and the SDK share the same package name). For instance,

the app com.iugome.lilknights (a RPG game available on Google Play) defines the permis-

106

7.3. NAMING AND DEFINITION CONVENTIONS

Table 7.5: Percentage of custom permissions definitions (grouped by their SLD or not) without
description per app origin

Origin % of definitions
without description

% of SLDs
without description

Google Play 82% 75.5%
Tencent 93.9% 91.5%
APKMonk 75.8% 66.2%
Xiaomi Mi 91.5% 87.7%
Baidu 97.8% 96.8%
APK Mirror 73.8% 48.3%
Huawei 96.6% 94.3%
Qihoo 360 95.9% 93.4%
AndroZoo
(other stores) 66.5% 59.7%

Pre-installed 69.8% 44.8%

All 75% 47.4%

sion com.facebook.orca.provider.ACCESS, which seems to be associated with the Face-

book Messenger app. Another more complex example is the com.mediatek.op12.phone app

which defines the com.verizon.permission.ACCESS_REMOTE_SIMLOCK permission. Not only

are the SLDs of the package name (mediatek.com, a chipset manufacturer) and of the custom

permission (verizon.com, a network operator) are different, but the signing certificate of the

app mention a third entity: TCL, a phone manufacturer. Unfortunately, the lack of developers’

compliance and third-party control by app markets defeats any automatic effort to perform

accurate attribution of custom permissions to the responsible party.

7.3.2 (Lack of) Documentation for Custom Permissions

One option for trying to better understand custom permissions would be to look at their de-

scriptions on the Android Manifest file. While this is a practice recommended by Google’s

official documentation[Gpla], it is not mandatory for developers and we find that in 75% of the

cases this field is just empty. In table 7.5, we break down the percentage of custom permis-

sions definitions without description by the origin of the apps. We also give the percentage

when grouping custom permissions by their SLD. While there is some variation between the

origins, we find that apps from all origins tend to lack the description when defining custom

permissions.

Even when developers provide a description when defining custom permissions, it is often

vague. For example, “Quick connect” or “Dolby Tuning permission description”. However,

these descriptions lack any actual indication as to what the purpose of the permission is. Yet,

107

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

there is no reason to believe that these “descriptions” truthfully and completely describe the

behavior and purpose of the custom permissions, especially in the case of those used for ne-

farious purposes.

In some cases, the suffix of a permission can render useful for inferring their purpose. We

find custom permissions that use the exact same suffix as official AOSP permissions, such as

com.oppo.permission.safe.CAMERA or thinkyeah.permission.READ_SMS. In total, we find

142 unique custom permissions with a normal protection level that use the same suffix as a

dangerous AOSP permission, and 1,334 with a signature or signatureOrSystem suffix. It is

unclear to us why these developers might try to replicate AOSP permissions, and this might

suggest that they could provide covert access to AOSP-protected system resources and data.

However, this string-based analysis is not conclusive in itself, and requires further investiga-

tion.

Finally, we find that online documentation explaining which company is behind a given

permission and what is the functionality or data protected is very scarce. In fact, we manu-

ally looked for public documentation for the permissions in our dataset using online search

engines and do not find publicly available documentation for most of them (94%). This is a

highly manual and time-consuming task, and thus we could not realistically manually search

for 257,710 permissions. Instead, we rank the permissions by their prevalence and focus our

manual efforts on those that are most highly used. For the lesser known permissions, we im-

plement an automatic crawler that relies on the DuckDuckGo API to search for documentation

relevant to the permission. Furthermore, we also crawl the StackOverflow forum to find dis-

cussions revolving around the permission. Regardless of combining automatic and manual

analysis of different resources, we are barely ever able to find any information relevant to a

given permissions functionality, showcasing the need for an approach to infer this from the

app itself.

7.4 Detecting Leaky Custom Permissions

The main goal of the Android permission system is to protect a set of system APIs from un-

wanted access without explicit user consent. However, custom permissions also make the

Android permission model vulnerable to an elevation of privilege attack, as highlighted by

Tuncay et al. [Tun+18] and Bagheri et al. [Bag+15; Bag+18]. In this scenario, we hypothesize

that a custom permission can enable access to sensitive data, or to perform an action that is

protected by an AOSP permission, andmakes it available to other apps via a custom permission

that has a lower protection level than the original AOSP permission.

108

7.4. DETECTING LEAKY CUSTOM PERMISSIONS

App 1

App 2

´
GPS

P
e
rm

is
si
o
n
sy
st
e
m

[dangerous]

Query without user consent

Query with user consent

Location data

shareLocService
µ

[normal]
1

2

3

4

Figure 21: Scenario where an attacker bypasses the permission model using a service protected
by a custom permission. The circled numbers indicate the order of each step.

Figure 21 illustrates this situation and involves two apps. app1 first tries to get the user’s

location through the official API but either lacks the necessary AOSP permission, or the user

rejects the request, so it is denied. Then, app1 sends an Intent [Int] to the shareLocService

service exposed by app2. This component is protected by a custom permission that app1 does

hold. app2 also holds the AOSP location permission, so it is able to successfully obtain the

user’s location. app2 then sends back the location to app1 as the response to its Intent.

In this particular scenario, app1 and app2 do not necessarily need to cooperate. The result is

identical if app2 fails to correctly protect its service, e.g., by giving access to it with a permission

that has a normal protection level. This creates a vulnerability that an attacker could exploit

simply by sending an Intent to the service to retrieve the location. In the attack above, the

only user interaction that will occur would be at step three, where the OS will display a popup

window to ask the user if they wish to allow app2 to access the location. If the user had already

granted such a permission to app2, then the attack will play out without any user interaction.

7.4.1 Tooling

Android’s custom permissions are asynchronous software artifacts that are difficult to moni-

tor, model, and study. While there is a vast arsenal of highly useful static and dynamic anal-

ysis tools to study many harmful and privacy-intrusive behaviors on Android, none of them

are fit to effectively infer the purpose of custom permissions and whether they expose sen-

sitive data or system resources. For example, Flowdroid [Arz+14] allows tracking data flows

within a given component, but it is unable to handle neither inter-component nor inter-app

communication–both of which are essential in the analysis of custom permissions. Similar

problems arise from Amandroid (since renamed Argus-SAF) [WRO18] which is able to detect

inter-component leaks but it does not detect information leaks between apps through compo-

109

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

nents protected by a custom permission. Finally, PScout [Au+12a] focuses on the analysis of

permissions by mapping AOSP APIs to AOSP permissions. It is not intended for understand-

ing what these permissions are protecting and cannot be used to determine the purpose of

a custom permission. Furthermore, typical analysis challenges such as software obfuscation,

dynamic code loading, or deodexing of compiled pre-installed software further complicate the

analysis of custom permissions.

To overcome these technical limitations and challenges, we create PermissionTracer and

PermissionTainter, two complementary tools tailored to the analysis of custom permissions:

Tool 1. PermissionTracer. We create PermissionTracer, a triage tool to extract infor-

mation about the type of data (or features) protected by custom permissions. Given an app

defining custom permissions, the tool analyzes all component protected by it and its methods

to report: (i) the data types of return values, and method prototypes that an app can access

when interacting with said component; and (i i) the list of APIs protected by AOSP permissions

accessed within the component’s methods. The ability to extract this knowledge allows deter-

mining whether components protected by custom permissions could potentially allow access—

by mistake or by design–to restricted data to an app that does not hold the required AOSP

permission and which ones might require manual verification. The way PermissionTracer

analyzes a protected component depends on its type:

• For activities and broadcast receivers, it looks for the setResult method and extracts

its return data type.

• For content providers (which work as a database for other apps), it obtains the type of

the getType method.

• For services where no data is returned, it extracts and parses the method prototypes

(i.e., method name, return type, and parameter types) from all the interfaces that are

returned by the onBind method. The type of data (e.g., String or Android objects such

as Android.location.Location) allows understanding the kind of information (e.g.,

contacts or location) it might expose.

PermissionTracer follows a tree search of method calls, parsing the Smali code of a

method looking for API calls. This process involves multiple steps. First, PermissionTracer

extracts and classifies all methods as either external, i.e., not defined by the app being analyzed

like AOSP calls, or internal. For the external calls, PermissionTracer looks at whether an

AOSP permission is needed to invoke the method using our permission mappings.7 For inter-
7To extract the list of protected AOSP APIs, we update Axplorer’s mappings [Bac+16] with (1) mappings pro-

vided by Android Studio IDE [Ando]; This includes lint scripts to warn developers if they use certain API calls

110

7.4. DETECTING LEAKY CUSTOM PERMISSIONS

nal methods, it adds them to a stack and traverses them recursively once the current method

has been analyzed. We limit the stack size to an arbitrary limit of 7 such method calls. To that

end, we modify Androguard [Anda] to load our AOSP permission mappings, and to obtain the

list of permission protected APIs accessed in a given class. We evaluate PermissionTracer

by manually inspect the Android components protected by custom permissions of 400 APKs.

From those, we manually extract the objects and value types that the components return, and

compare this to the output of PermissionTracer in the dataset. We do not find any false pos-

itive or false negative in the output of our tool. We make our modifications publicly available

along with PermissionTracer’s code and AOSP permission mappings.

Tool 2. PermissionTainter. PermissionTracer does not allow discovering potential in-

stances of leaks of data protected by AOSP permissions. In addition to PermissionTracer, we

build PermissionTainter, a static taint analyzer developed to study custom permissions on

top of our modified version of Androguard. PermissionTainter starts by looking for intent

filters that are registered by the app that are not already defined in the app’s manifest. Then,

it parses the DEX code to look for intents and handlers, and try to associate them with their

target. For intents, the target can either be explicitly set by the app, or implicit in the case of

broadcasted intents. In the latter case, we use the list of intent filters to determine the classes

that would receive such an intent.

After this step, PermissionTainter enriches the analysis object created by Androguard

(which contains, among other things, all the classes and methods and the cross-references

between them) to add extra cross-references to account for asynchronous communications,

such as intents. Essentially, PermissionTainter is creating a graph representing the whole

DEX code, where vertices are methods, and edges are methods calls, which now include asyn-

chronous communications as well.

Finally, PermissionTainter relies on an external list of sources and sinks. It also con-

sider any AOSP API protected by an AOSP permission as a source. PermissionTainter first

locates all call to sinks methods, and, for each occurrence, builds a call graph rooted at that

method. It then looks for any call to a source method in that call graph, and extract all paths

from the sources to the sink. A path in the call graph would indicates that the value returned

by the source method could make its way to the sink. PermissionTainter will then follow

each path in the call graph and create the corresponding control flow graph (CFG). Again,

without requesting the associated permission. and (2) knowledge extracted from the AOSP source code to see the
prototypes of methods that use the @RequiresPermission annotation [Req], which indicate the permission(s) that
need to be granted to an app in order to invoke a given AOSP method. To the best of our knowledge, we are the
first to follow this easy-to-update approach to obtain a more complete and fresh mapping of API calls to AOSP
permissions.

111

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

PermissionTainter looks for all paths from the source to the sink, this time in the CFG, and

apply tainting rules to detect potential misuses.

Limitations. Both of our tools suffer from a number of limitations which are common to

other static analysis approaches for Android apps. It can not detect calls to protected APIs

that are called by other components loaded dynamically during runtime (e.g., using Java’s

reflection [Jav] or JNI APIs); and while it can tell if a component uses permission-protected

APIs, it can not guarantee that the component will ever actually be used in runtime. Moreover,

pre-installed apps can use ODEX instead of DEX files, which are stored alongside the APK file.

Because of limitations in our data collection strategy, we may miss the ODEX file associated

with an APK, preventing us from doing any code analysis. Lastly, our tools cannot detect if an

app manually implement access control mechanisms (e.g., by checking the package name of

the calling app upon receiving an intent). Such analysis must therefore be conductedmanually,

after detection of a potential case of abuse.

7.4.2 Results

We run both tools on our dataset of 96,748 unique apps exposing custom permissions to protect

214,943 components.8 Using PermissionTracer, we find that 24,648 of those components

(11%) access at least one API protected by an AOSP permission, and 16% of those components

access at least one API protected by an AOSP permission with a dangerous protection level.

This tool allows us to identify the following behaviors:

Sensitive components

When taking into account the protection level of the custom permission protecting these com-

ponents, we find 1,209 components (over 2,192 apps) use a custom permission with a normal

protection level. These components are essentially unprotected, as the normal protection level

allows any app on the device to request and be granted the permission. 55% of these apps are

pre-installed. For example:

• 950 of those components access APIs protected by the READ_PHONE_STATE permission,

which grants access to non resettable device identifiers such as the IMEI until Android

10, which can be used for user tracking [Gooa].

• 497 components access location data protected by the ACCESS_COARSE_LOCATION per-

mission, while 422 do access ACCESS_FINE_LOCATION.
8Note that given the scale of our dataset, we only analyse the latest version of each package and, in the case of

pre-loaded apps, we define as unique apps those unique combinations of package names and signing certificates.

112

7.4. DETECTING LEAKY CUSTOM PERMISSIONS

• We find 134 components accessing APIs protected by READ_PRIVILEGED_PHONE_STATE,

which also gives access to unique identifiers, and 58 components accessing APIs pro-

tected by WRITE_SECURE_SETTINGSwhich allow for the modification of the system pref-

erences of the device.

Such findings do not necessarily indicate a malicious intent from the developer, but po-

tentially insecure development practices that could be exploited by malicious actors to access

AOSP-protected data without user awareness. This is particularly concerning with normal

custom permissions, which are granted automatically at install time. An example of such a

permission is melons.dialer.permission.CALL_LOG, defined by a dialer app that was pub-

lished on Google Play. This permission has a normal protection level and protects a content

provider that allows other apps to read and delete entries from the call log. The app imple-

ments access control simply by checking the package name of the caller app, and only allows

queries from package names in a hard-coded list of messenger apps, including some from the

same developer. Thus, an attacker just needs to use one of these packages names for their app,

and then query the dialer app to read or delete call log entries without requesting the AOSP

permission. We tested and verified this vulnerability dynamically with a proof-of-concept app.

We also study in detail the return types of the 3,780 methods that PermissionTracer

detected. Unsurprisingly, we find that most methods return void, boolean, or integer values

(36%, 29% and 16% of the cases, respectively). However, the method returns Android objects

in 123 cases.

For instance, the mobi.maptrek.lite.permission.RECEIVE_LOCATION permission (with

a normal protection level) defined by the mobi.maptrek.lite app protects a service that de-

fines a getLocation() method, which returns a Landroid/Location/Location object. Fur-

ther analysis of the code of the app shows that the service makes the location of the user

available to any colluding app that requires the custom permission. The app defining this per-

mission is an offline map app, intended to be used during outdoor activities when the user has

no Internet connection. The app is available on Google’s Play Store and has been downloaded

over 10k times. We verified this attack with a proof-of-concept app, showing that any app can

access user location without requesting the official AOSP permission and without the need to

interact with the developers of the other app. In 19% of the cases, the methods return a custom

object defined by the app itself.

113

CHAPTER 7. ANALYZING CUSTOM PERMISSIONS BEHAVIOUR

PII leaks

PermissionTainter detects 5 potential PII leaks in pre-installed apps. All these apps imple-

ment a similar pattern: upon receiving an intent with a specific action (which can be discovered

simply by analyzing the source code of the protected component), an attacker can make the

component broadcast an intent which contains the Wi-Fi and Bluetooth MAC addresses as

extras. We find these apps even in recent Samsung, Asus and LGE devices running Android

version 11. We have not found similar behaviors in apps published in app stores. Any collud-

ing app that has the correct intent filter (which can also be simply discovered by analyzing the

component’s source code) can then receive that intent and get access to the MAC addresses.

The MAC addresses can then be used to uniquely identify a user, or can be used to infer their

location [Ftc].

Placeholder permissions

We identify 212,277 apps defining custom permissions that are potentially unused, i.e., the per-

missions is defined but it is never used in the manifest to protect any of the app’s components.

We name those as “placeholder permissions”. The reasons why they are defined remain un-

known to us but it might be the result of poor development practices, such as including code

obtained from online forums or legacy code from older versions of the app. Yet, it is possible

that such apps do not rely on the system’s package manager to enforce their permission and

chose to do so internally using either checkPermission, enforcePermission, or one of their

variants [Andt].

To detect such cases, we analyze the binaries of these apps to look for calls to these meth-

ods. We find stark differences between pre-installed apps, where 51,793 of the apps call one of

themethods, and publicly-available apps, where only 149 of the apps do so. Overall, only 51,942

of the apps seem to do dynamic enforcement of custom permissions. Table 7.6 shows the num-

ber of apps for which we detected at least one call to checkPermission, enforcePermission

or one of their variants [Andt] in the DEX or ODEX code of apps that are defined but do not

protect any component. We grouped together all apps collected from public app stores or from

AndroZoo under the “Public apps” category.

To gain a better understanding of why so many app developers define custom permissions

but do not protect any component with it (nor enforce them dynamically), we contacted 529

developers using the contact email address listed in the public profile of their apps. We discuss

the ethical considerations and IRB approval in §7.1. Our survey received 53 responses. Sur-

prisingly, 28% of the developers that responded to us either did not know that their app defined

114

7.5. TAKEAWAYS

Table 7.6: Number of apps defining placeholder permissions and apps dynamically enforcing
custom permissions broken down by dataset of origin.

Origin # placeholder
apps

calling
check*

calling
enforce*

calling
any

Pre-installed 189,177 45,889 5,771 51,793
Public apps 23,143 149 8 149

Total 212,277 5,779 46,038 51,942

a custom permission or they did not know why it was there. In 17% of the cases, an SDK used

by the developer added the permission. In 9% of the cases, the permission was associated with

an old feature that had been already removed.

Although the scale of our survey is small, it provides some intriguing perspectives on some

of the reasons behind the widespread usage of custom permissions. The responses suggest a

poor understanding of the (custom) permission system by a fraction of the developers, which

could negatively impact users by inadvertently exposing sensitive data or resources.

7.5 Takeaways

In this chapter, we presented a holistic view of the prevalence of custom permissions in the

Android ecosystem and their inherent transparency, security and privacy problems. Our find-

ings suggest that, despite this being a widely used feature in both pre-installed and publicly

available apps, custom permissions lack transparency, accountability, and it is the source of

potential security and privacy harm for end users. In an effort to foster more research efforts

in this area, we make available our dataset of custom permissions [Datb; Data], as well as the

source code of our tools, PermissionTracer [Perd] and PermissionTainter [Pere], to the

research community, platform operators, and regulators.

115

III

Conclusions and Open
Issues

Chapter 8

Discussion

“That’s mortals for you, Death continued.
They’ve only got a few years in this world and they spend them
all in making things complicated for themselves. Fascinating.”

— Terry Pratchett, Mort (1987)

I
n this thesis, we systematically studied, at scale, the vast and unexplored ecosystem

of pre-installed Android software and its potential impact on consumers. In Chapter 5,

we have made clear that, thanks in large part to the open-source nature of the Android

platform and the complexity of its supply chain, organizations of various kinds and sizes have

the ability to embed their software in custom Android firmware versions. The myriad of ac-

tors involved in the development of pre-installed software and the supply chain range from

hardware manufacturers to MNOs and third-party advertising and tracking services. These

actors have privileged access to system resources through their presence in pre-installed apps

but also as third-party libraries embedded in them. Potential partnerships made behind closed

doors between stakeholders may havemade user data a commodity before users purchase their

devices or decide to install software of their own. Then, we have shown in Chapter 6 how the

Android permission system has evolved over time, how it gained in complexity, and how pre-

installed apps make use of some of its feature and the potential security and privacy issues

that stem from this usage. Finally, we have uncovered in Chapter 7 several problems inherent

to custom permissions. As they are, custom permissions open various avenues for abuse, an

issue which is compounded by a severe lack of transparency in the app ecosystem of Android.

As we demonstrated in this thesis, this situation has become a peril to users’ privacy and

even security due to an abuse of privilege such as in the case of pre-installed malware, or as

a result of poor software engineering practices that introduce vulnerabilities and dangerous

119

CHAPTER 8. DISCUSSION

backdoors. Google, both as the platform operator and the main driving force behind the An-

droid open source project, is in a privileged position to mitigate the issues we reported in this

thesis. In this chapter, we first discuss strategies to address issues related to attribution in An-

droid (§8.1) and the privilege escalations made possible by exposed components and custom

permissions (§8.2). Then, we discuss transparency and user control mechanisms (§8.3), and

the various consumer protection regulations in place that could have an impact on privacy in

the Android ecosystem (§8.4). We conclude this chapter with recommendations to address the

issues presented in this thesis (§8.5).

8.1 Attribution and Accountability

The attribution problem in Android is rooted in the absence of a reliable way of tracing an app

back to its developer. Due to a lack of central authority or trust system to allow verification

and attribution of the self-signed certificates that are used to sign apps, and due to a lack of

any mechanism to identify the purpose and legitimacy of many of these apps and custom

permissions, it is difficult to attribute unwanted and harmful app behaviors to the party or

parties responsible. This has broader negative implications for accountability and liability in

this ecosystem as a whole.

Signing certificates are a logical candidate to use for attribution, but their rather poor usage

in the wild currently makes them unreliable as an attribution signal due to the widespread use

of self-signed certificates, which often lack any valid or useful information, such as the case of

apps using debug signing certificates as we highlight in Chapter 5. One potential solution to

this problem would be for Google to require app developers to take ownership of their apps

through a centralized public key infrastructure. This, in turn, allows users to know the true

developer of the apps, as well as the entity that exposes the custom permission to other apps

(which itself could be an embedded third-party component). Additionally, custom permissions

could have a definer tag to their definitions so that a user would always know who is the

actor behind a given custom permission as in the case of permissions defined by third-party

components embedded in the app.

8.2 Privilege Escalation

Fixing privilege escalation issues arising from features exposed by system apps or custom per-

missions is complex, as it exploits the customization process which is a central part of the

Android ecosystem. One approach to tackle them would be to determine the AOSP permis-

120

8.3. TRANSPARENCY AND USER CONTROL

sions being used in the exposed component to perform a risk assessment using a tool such as

PermissionTracer. Note that a dangerous permission might, nonetheless, be used within a

component without exposing the data protected by it. Such false positives could be weeded

out by using taint analysis (as we do using PermissionTainter) to automatically track pro-

tected data and figure out whether or not such data is being exfiltrated. We believe that the

ability to automatically prevent potential attacks justifies instances in which the platform en-

forces a higher permission level (e.g., dangerous) for a custom permission than the originally

necessary (e.g., normal). This enforcement can be done automatically by analyzing the app’s

code and it could be introduced as part of the analysis processes implemented in Google Play

Protect [Plac], the built-in security mechanism present on Android devices and in the Google

Play Store.

8.3 Transparency and User Control

In the meantime regular Android users are, by and large, unaware of the presence of most of

the software that comes pre-installed on their Android devices and their associated privacy

risks. Users are clueless about the various data-sharing relationships and partnerships that ex-

ist between companies that have a hand in deciding what comes pre-installed on their phones.

Custom permissions, for instance, are only shown to the user if the developer creates them

with a dangerous protection level, despite their potential usage for data dissemination and

their risks for end users privacy and security. Even when such permissions are displayed, the

developer-provided description usually does not contain any meaningful information as to the

actual role of a given custom permission, as we highlight in Chapter 7. Users’ activities, per-

sonal data, and habits may be constantly monitored by stakeholders that many users may have

never heard of, let alone consented to collect their data. We have demonstrated instances of

devices being backdoored by companies with the ability to root and remotely control devices

without user awareness, and install apps through targeted monetization and user-acquisition

campaigns. Even if users decide to stop or delete some of these apps, they will not be able to do

so since many of them are core Android services, and others cannot be permanently removed

by the user without root privileges. It is unclear if the users have actually consented to these

practices, or if theywere informed about them before using the devices (i.e., on the first boot) in

the first place. To clarify this, we acquired (in 2017) 6 popular brand-newAndroid devices from

vendors including Nokia, Sony, LG, and Huawei from a large Spanish retailer. When booting

them for the first time, 3 devices did not present a privacy policy at all, only the Android terms

of service. The rest rendered a privacy policy that only mentions that they collect data about

121

CHAPTER 8. DISCUSSION

the user, including PII such as the IMEI for added value services. Only one mentioned that

the device should not be used by minors due to aggressive data collection practices. Note that

users have no choice but to accept Android’s terms of service, as well as the manufacturer’s

one if presented at all to the user. Otherwise Android will simply stop booting, which will

effectively make the device unusable.

8.4 Consumer Protection Regulations

While some jurisdictions have very few regulations governing online tracking and data collec-

tion, there have been several movements to regulate and control these practices, such as the

GDPR in the EU [Gdp], and California’s CCPA [Ccp] in the US. While these efforts are cer-

tainly helpful in regulating the rampant invasion of users’ privacy in the mobile world, they

have a long way to go. Most mobile devices still lack a clear and meaningful mechanism to

obtain informed consent, which is a potential violation of the GDPR. In fact, many of the pre-

installed ATSes may not be COPPA-compliant [Rey+18],1 even though many minors in the US

use mobile devices with pre-installed software that engage in data collection. This indicates

that even in jurisdictions with strict privacy and consumer protection laws, there still remains

a large gap between what is done in practice and the enforcement capabilities of the agencies

appointed to uphold the law.

8.5 Recommendations

To address the issues mentioned above and to make the ecosystem more transparent we pro-

pose a number of recommendations. These suggestions are made under the assumption that

stakeholders are willing to self-regulate and to enhance the status quo. We are aware that some

of these suggestions may inevitably not align with corporate interests of every organization

in the supply chain, and that an independent third party may be needed to audit the process.

Google might be a prime candidate for it given its capacity for licensing vendors and its cer-

tification programs. Alternatively, in absence of self-regulation, governments and regulatory

bodies could step in and enact regulations and execute enforcement actions that wrest back

some of the control from the various actors in the supply chain. We also propose a number of

actions that would help independent investigators to detect deceptive and potentially harmful

behaviors.
1The Children’s Online Privacy Protection Act of 1998 (COPPA) is a US federal law to protect minors under 13

years of age from online tracking without “verifiable consent” from a parent or legal guardian [Cop]

122

8.5. RECOMMENDATIONS

8.5.1 Attribution and Accountability

To combat the difficulty in attribution and the resulting lack of accountability, we propose the

introduction and use of certificates that are signed by globally-trusted certificate authorities.

Alternatively, it may be possible to build a certificate transparency repository dedicated to

providing details and attribution for self-signed certificates used to sign various Android apps,

including pre-installed ones.

In addition, requiring app developers to include a list of their defined custom permissions

along with a better description of the purpose and the potential associated risks is an important

and much-needed first step to improve transparency, promote user awareness, and empower

user control. We understand that developers can still be obscure or deceitful in describing

the purpose of a permission, but we argue that if all developers were forced to add a more

informative description to their permissions, users would be more likely to grant access to

well-explained permissions over those that are unclear about the functionality that they ex-

pose. Moreover, developers with a legitimate reason to create a custom permission or expose

a specific feature will most likely comply with such a rule by providing a clear description.

To make this more effective, we suggest extending the description with a mandatory risk

self-assessment done by the developer. Such assessment might consist of a few key questions

with a set of predefined answers regarding the data and features accessed or shared by the per-

mission. Software distribution channels can verify and enforce permission description sanity,

at least at a basic level, to ensure the system is not cheated. Furthermore, this could be a way

to ensure that developers do not define custom permissions that are unnecessary, reinforcing

the practices already implemented by Google to encourage developers to minimize the access

to sensitive permissions via permission nudges [Ped+19].

8.5.2 Accessible Documentation and Consent Forms

Android devices can be required to document the specific set of apps that are pre-installed,

along with their purpose and the entity responsible for each piece of software, in a manner that

is accessible and understandable to the users. This will ensure that at least a reference point

exists for users (and regulators) to find accurate information about pre-installed apps and their

practices. Moreover, the results of our small-scale survey of consent forms of some Android

vendors leave a lot to be desired from a transparency perspective: users are not clearly in-

formed about third-party software that is installed on their devices, including embedded third-

party tracking and advertising services, the types of data they collect from them by default,

and the partnerships that allow personal data to be shared over the Internet. This necessitates

123

CHAPTER 8. DISCUSSION

a new form of privacy policy suitable for pre-installed apps to be defined (and enforced) to

ensure that such practices are at least communicated to the user in a clear and accessible way.

This should be accompanied by mechanisms to enable users to make informed decisions about

how or whether to use such devices without having to root them.

Another step in the right direction would be to inform users about the custom permissions

requested and defined by an app. At the time of this writing, a custom permission is only shown

to the user when requested, and only if the developer decides to give it a dangerous protection

level, which essentially allows nefarious developers to stay hidden if they so choose. The

risk self-assessment discussed above should be the basis to convey the information effectively.

The replies to the set of questions could be leveraged to automatically decide the protection

level of the custom permission, instead of leaving this decision to the developer. Finally, the

platform should offer users a mechanism to revoke previously granted custom permissions,

both individually for a particular app or globally within the system through a blocklist.

124

Chapter 9

Conclusion

“It is the nature of science that answers automatically
pose new and more subtle questions”

— Isaac Asimov, The Wellsprings of Life (1960)

I
n this thesis, I demonstrated the opacity and complexity of the supply chain ofmodern

Android devices, and the level of customization that each stakeholder brings to each

device. While some of this customization is due to product differentiation, the opacity

and absence of control over the whole process clearly endangers the privacy and security of

the Android operating system. This thesis present the first large-scale systematic analysis of

Android customization. Our work was recognized by some data protection agencies (DPA),

the CNIL (French DPA) and the AEPD (Spanish DPA) in particular. Upon publication of our

paper on pre-installed apps [Gam+20], the AEPD wrote a press release to help disseminate

our results towards regulators [Aep]. Thanks to this, we were invited to present our results to

the European Data Protection Board (EDPB). In this chapter, I highlight the key contributions

from this thesis (§9.1), and outline possible future research directions in this area (§9.2).

9.1 Contributions

9.1.1 The Android Pre-installed Apps Ecosystem

In Chapter 5, I presented the first large-scale study of pre-installed software on Android de-

vices. Our work relies on a large dataset of real-world Android firmware that I acquired world-

wide using crowd-sourcing methods. This allows us to answer questions related to the stake-

holders involved in the supply chain, from device manufacturers and mobile network oper-

125

CHAPTER 9. CONCLUSION

ators to third-party organizations like advertising and tracking services, and social network

platforms. I also uncovered relationships between these actors, which seem to revolve primar-

ily around advertising and data-driven services. Overall, I demonstrate that the supply chain

that results of Android’s open source model lacks transparency and has facilitated potentially

harmful behaviors and backdoored access to sensitive data and services without user consent

or awareness.

9.1.2 Evolution of the Android Permission System

The permission system has long been the focus of the research community, especially in the

use, enforcement, and usability of AOSP permissions, which revealed severe privacy and se-

curity shortcomings inherent to the Android permission model (see Chapter 3.2, page 30). In

Chapter 6, I presented the temporal evolution of the Android permission system. I showed

how additional features of AOSP translated into new permissions, but also new permission

flags and protection level flags. Notably, I studied the impact of these additions over time over

the process of granting a permission to a given app. I also showed how pre-installed apps,

specifically from third-party sources, make use of these features of the permission system and

the potential impact on the privacy and security of users.

9.1.3 Android Custom Permissions

In Chapter 7, I presented a holistic view of the prevalence of custom permissions in the Android

permission system, and the problems that they bring from the point of view of transparency,

security and privacy. Our findings show that, despite being a widely used feature in both pre-

installed and publicly available apps, custom permissions lack transparency, accountability,

and could be the source of potential security and privacy harm for end users. To detect such

privacy and security issues, I created two custom-made tools: (1) PermissionTracer, a tool

that reports potentially-dangerous custom permissions and detects potential cases of a privi-

lege escalation attack in which an attacker can access permission-protected information using

custom permissions; and (2) PermissionTainter, a static taint analysis tool that inspects the

DEX code of apps that define custom permissions to identify potential privacy leaks due to

those permissions. I make both these tools freely available to the community, along with our

dataset of custom permissions.

126

9.2. OPEN ISSUES AND FUTURE WORK

9.2 Open Issues and Future Work

In an effort to encourage more research efforts in the area of Android customization and the

supply chain issues, I make the tools I developed and some data freely available to the commu-

nity on our website, the Android Observatory [Andn]. The dataset of pre-installed apps is also

available on demand. In this section, I highlight some possible research directions that steam

from our results.

9.2.1 Android Framework Customization

In our work, I only considered customization of the OS implemented by pre-installing extra

apps on the system partitions on a device. However, there is nothing preventing a phone man-

ufacturer to modify core Android components, or the OS directly, as long as they respect the

limits set by the CDD. I have shown examples of such customization in Chapter 7 (page 93)

in the case of custom permissions, or the addition of extra root certificates in the system in

Chapter 5 (page 47), which was also highlighted in previous work [VR+14]. Some recent stud-

ies already present evidence of privacy invasive behavior in core components [Lei21; LPL21;

Lei22]. This studies are focused on major vendors though, and do not give a global overview of

the issue. Such a study could also potentially help shed light on the supply chain, by looking

at the recipient of network flows.

9.2.2 Native Libraries

Every Android device includes native libraries that provide features for the OS (e.g., hardware

drivers). Native libraries can have the same role as pre-installed apps, and be a used as a

customization vector for stakeholders of the supply chain. The study of such libraries poses

another set of challenges, as they require new tools to be analyzed: native libraries are (usually)

ELF objects, and cannot be analyzed using state-of-the-art Android analysis tools.

9.2.3 Dynamic Analysis

The dynamic analysis of Android apps remains challenging, especially at scale, as this requires

realistic emulation of user input, and more time than for static analysis. For pre-installed apps,

there are additional challenges. Pre-installed apps developers know in advance the environ-

ment in which their app will run, and can therefore rely on other apps or specific hardware,

which would not be present in an emulated environment. Recent studies used dynamic anal-

ysis to conduct privacy analysis of core components and devices as a whole [Lei21; LPL21;

127

CHAPTER 9. CONCLUSION

Lei22], but such studies rely on the actual hardware which has obvious scaling limitations.

However, Pustogarov et al. has already shown that it is possible to emulate the behavior of

hardware dependencies without having access to the physical device [PWL20b]. It should

therefore be possible to build and expand this approach to emulate the complete environment

an app expects, and build a dynamic analysis environment for pre-installed apps.

128

Bibliography

[Aaf+15] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen,

XiaoFeng Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace.

“Hare Hunting In The Wild Android: A Study On The Threat Of Hanging

Attribute References”. In: Proceedings of the ACM Conference on Computer and

Communication Security (CCS). 2015.

[AHIN14] Ahmed Al-Haiqi, Mahamod Ismail, and Rosdiadee Nordin.

“A New Sensors-based Covert Channel on Android”.

In: The Scientific World Journal (2014).

[All+16] Kevin Allix, Tegawendé F. Bissyandé, Jacqes Klein, and Yves Le Traon.

“AndroZoo: Collecting Millions of Android Apps for the Research Community”.

In: Proceedings of the International Conference on Mining Software Repositories

(MSR). 2016.

[Ama+15] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino,

Porfirio Tramontana, Emily Kowalczyk, and Atif M Memon. “Exploiting

the Saturation Effect in Automatic Random Testing of Android Applications”.

In: ACM International Conference on Mobile Software Engineering and Systems.

2015.

[Arz+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,

Alexandre Bartel, Jacqes Klein, Yves Le Traon, Damien Octeau, and

Patrick McDaniel. “Flowdroid: Precise Context, Flow, Field, Object-Sensitive

and Lifecycle-Aware Taint Analysis for Android Apps”. In: Proceedings of the

ACM Special Interest Group on Programming Languages (SIGPLAN) (2014).

[Au+12a] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie.

“PScout: Analyzing the Android Permission Specification”. In: Proceedings of the

ACM Conference on Computer and Communication Security (CCS). 2012.

129

BIBLIOGRAPHY

[Au+12b] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie.

“PScout: Analyzing The Android Permission Specification”. In: Proceedings of

the ACM Conference on Computer and Communication Security (CCS). 2012.

[Aut+21] Marco Autili, Ivano Malavolta, Alexander Perucci, Gian Luca Scoccia,

and Roberto Verdecchia.

“Software Engineering Techniques for Statically Analyzing Mobile Apps:

Research Trends, Characteristics, and Potential For Industrial Adoption”.

In: Journal of Internet Services and Applications (2021).

[Avd+15] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla,

Andreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden.

“Mining Apps for Abnormal Usage of Sensitive Data”.

In: Proceedings of the International Conference on Software Engineering. 2015.

[Bac+16] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel,

Damien Octeau, and Sebastian Weisgerber.

“On Demystifying the Android Application Framework: Re-Visiting Android

Permission Specification Analysis”.

In: Proceedings of the USENIX Security Symposium. 2016.

[Bag+15] Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson.

“Detection of design flaws in the android permission protocol through bounded

verification”. In: Proceedings of the International Symposium on Formal Methods.

2015.

[Bag+18] Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson. “A formal

approach for detection of security flaws in the android permission system”.

In: Formal Aspects of Computing (2018).

[Bar+12] Alexandre Bartel, Jacqes Klein, Yves Le Traon, and Martin Monperrus.

“Dexpler: Converting Android Dalvik Bytecode to Jimple for Static Analysis

with Soot”. In: Proceedings of the ACM SIGPLAN International Workshop on State

of the Art in Java Program analysis. 2012.

[Bha+17] Shweta Bhandari, Wafa Ben Jaballah, Vineeta Jain, Vijay Laxmi,

Akka Zemmari, Manoj Singh Gaur, Mohamed Mosbah, and Mauro Conti.

“Android Inter-App Communication Threats and Detection Techniques”.

In: Computers & Security (2017).

130

BIBLIOGRAPHY

[Blá+21] Eduardo Blázqez, Sergio Pastrana, Álvaro Feal, Julien Gamba,

Platon Kotzias, Narseo Vallina-Rodriguez, and Juan Tapiador.

“Trouble Over-The-Air: An Analysis of FOTA Apps in the Android Ecosystem”.

In: IEEE Symposium on Security and Privacy (SP). 2021.

[BNN17] Kenneth Block, Sashank Narain, and Guevara Noubir.

“An Autonomic and Permissionless Android Covert Channel”.

In: Proceedings of the ACM Conference on Security and Privacy in Wireless and

Mobile Networks (WiSec). 2017.

[Bug+11] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and

Ahmad-Reza Sadeghi. “Xmandroid: A New Android Evolution to Mitigate

Privilege Escalation Attacks”.

In: Technische Universität Darmstadt, Technical Report TR-2011-04 (2011).

[Bug+12] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,

Ahmad-Reza Sadeghi, and Bhargava Shastry.

“Towards Taming Privilege-Escalation Attacks on Android”. In: Proceedings of

the Network and Distributed System Security Symposium (NDSS). 2012.

[Cal+20] Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and

Andreas Zeller. “Automatically Granted Permissions in Android Apps: An

Empirical Study on Their Prevalence and on the Potential Threats for Privacy”.

In: Proceedings of the International Conference on Mining Software Repositories

(MSR). 2020.

[Chi+17] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I Hong, and

Yuvraj Agarwal. “Does this app really need my location? Context-aware

privacy management for smartphones”. In: Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies (2017).

[Des14] Luke Deshotels. “Inaudible Sound as a Covert Channel in Mobile Devices”.

In: USENIX Workshop on Offensive Technologies (WOOT). 2014.

[Die+11] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and

Dan S Wallach.

“Quire: Lightweight Provenance for Smart Phone Operating Systems”.

In: Proceedings of the USENIX Security Symposium. 2011.

131

BIBLIOGRAPHY

[DK12] David Dittrich and Erin Kenneally. “The Menlo Report: Ethical principles

guiding information and communication technology research”.

In: US Department of Homeland Security (2012).

[Els+20] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo,

Qingchuan Zhao, and Zhiqiang Lin.

“{FIRMSCOPE}: Automatic Uncovering of Privilege-Escalation Vulnerabilities

in Pre-Installed Apps in Android Firmware”.

In: Proceedings of the USENIX Security Symposium. 2020.

[Enc+14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,

Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and

Anmol N Sheth. “TaintDroid: An Information-Flow Tracking System for

Realtime Privacy Monitoring on Smartphones”.

In: ACM Transactions on Computer Systems (TOCS) (2014).

[FCF09] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster.

“ScanDroid: Automated Security Certification of Android Applications”.

In: Manuscript, University of Maryland (2009).

[Fea+21] Álvaro Feal, Julien Gamba, Juan Tapiador, Primal Wijesekera,

Joel Reardon, Serge Egelman, and Narseo Vallina-Rodriguez.

“Don’t Accept Candy from Strangers: An Analysis of Third-Party Mobile SDKs”.

In: Data Protection and Privacy: Data Protection and Artificial Intelligence (2021).

[Fel+11a] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and

David Wagner. “Android Permissions Demystified”. In: Proceedings of the

ACM Conference on Computer and Communication Security (CCS). 2011.

[Fel+11b] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and

David Wagner. “Android Permissions Demystified”. In: Proceedings of the

ACM Conference on Computer and Communication Security (CCS). 2011.

[Fel+11c] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk,

Steve Hanna, and Erika Chin.

“Permission Re-Delegation: Attacks and Defenses”.

In: Proceedings of the USENIX Security Symposium. 2011.

[Fel+12] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney,

Erika Chin, and David Wagner.

132

BIBLIOGRAPHY

“Android Permissions: User Attention, Comprehension, and Behavior”.

In: Proceedings of the Symposium on Usable Privacy and Security (SOUPS). 2012.

[FGW11] Adrienne Porter Felt, Kate Greenwood, and David Wagner.

“The effectiveness of application permissions”.

In: Proceedings of the USENIX conference on Web application development. 2011.

[Gam+20] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador,

and Narseo Vallina-Rodriguez.

“An Analysis of Pre-installed Android Software”.

In: IEEE Symposium on Security and Privacy (SP) (2020).

[Gib+12] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen.

“AndroidLeaks: Automatically Detecting Potential Privacy Leaks in Android

Applications on a Large Scale”.

In: International Conference on Trust and Trustworthy Computing. 2012.

[GK14] David Sounthiraraj Justin Sahs Garret Greenwood and Zhiqiang

Lin Latifur Khan. “SMV-Hunter: Large Scale, Automated Detection of

SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps”. In: Proceedings of

the Network and Distributed System Security Symposium (NDSS). 2014.

[Gor+15] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham,

Nguyen Nguyen, and Martin C Rinard.

“Information Flow Analysis of Android Applications in DroidSafe”. In:

Proceedings of the Network and Distributed System Security Symposium (NDSS).

2015.

[Gra+12] Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang.

“Systematic Detection of Capability Leaks in Stock Android Smartphones”. In:

Proceedings of the Network and Distributed System Security Symposium (NDSS).

2012.

[He+19] Yongzhong He, Xuejun Yang, Binghui Hu, and Wei Wang.

“Dynamic Privacy Leakage Analysis of Android Third-Party Libraries”.

In: Journal of Information Security and Applications (2019).

[Ikr+16] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne,

Mohamed Ali Kaafar, and Vern Paxson. “An Analysis of the Privacy and

Security Risks of Android VPN Permission-Enabled Apps”.

In: Proceedings of the Internet Measurement Conference (IMC). 2016.

133

BIBLIOGRAPHY

[Jeo+12] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel,

Nikhilesh Reddy, Jeffrey S Foster, and Todd Millstein.

“Dr. Android and Mr. Hide: Fine-Grained Permissions in Android Applications”.

In: Proceedings of the ACM Workshop on Security and Privacy in Smartphones

and Mobile Devices. 2012.

[Ji+21] Yuede Ji, Mohamed Elsabagh, Ryan Johnson, and Angelos Stavrou.

“DEFInit: An Analysis of Exposed Android Init Routines”.

In: Proceedings of the USENIX Security Symposium. 2021.

[Jin+16] Yiming Jing, Gail-Joon Ahn, Adam Doupé, and Jeong Hyun Yi. “Checking

Intent-Based Communication in Android with Intent Space Analysis”.

In: Proceedings of the ACM symposium on Information, computer and

communications security (ASIA CCS). 2016.

[JMF12] Jinseong Jeon, Kristopher K Micinski, and Jeffrey S Foster.

SymDroid: Symbolic Execution for Dalvik Bytecode. Tech. rep. 2012.

[Joh+12] Ryan Johnson, Zhaohui Wang, Corey Gagnon, and Angelos Stavrou.

“Analysis of Android Applications’ Permissions”. In: International Conference on

Secure Software Integration and Reliability Improvement Companion (SSIRI-C).

2012.

[KGC13] Kristen Kennedy, Eric Gustafson, and Hao Chen.

“Quantifying the effects of removing permissions from android applications”.

In: Mobile Security Technologies (MoST). 2013.

[Kim+12] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and

SWRD Center.

“ScanDal: Static Analyzer for Detecting Privacy Leaks in Android Applications”.

In: MoST (2012).

[Kli+14] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer.

“Android Taint Flow Analysis for App Sets”.

In: Proceedings of the ACM SIGPLAN International Workshop on the State of the

Art in Java Program Analysis. 2014.

[KZM17] Babu Khadiranaikar, Pavol Zavarsky, and Yasir Malik.

“Improving Android Application Security for Intent Based Attacks”.

In: IEEE Annual Information Technology, Electronics and Mobile Communication

Conference (IEMCON). 2017.

134

BIBLIOGRAPHY

[Lau+20] Billy Lau, Jiexin Zhang, Alastair R Bereford, Daniel Thomas, and

René Mayrhofer. “Uraniborg’s Device Preloaded App Risks Scoring Metrics”.

In: Institute of Networks and Security: Linz, Austria (2020).

[Lee+21] Yu-Tsung Lee, William Enck, Haining Chen, Hayawardh Vijayakumar,

Ninghui Li, Zhiyun Qian, Daimeng Wang, Giuseppe Petracca, and

Trent Jaeger. “PolyScope:Multi-Policy Access Control Analysis to Compute

Authorized Attack Operations in Android Systems”.

In: Proceedings of the USENIX Security Symposium. 2021.

[Lei21] Douglas J Leith. “Mobile Handset Privacy: Measuring The Data iOS and

Android Send to Apple And Google”.

In: International Conference on Security and Privacy in Communication Systems.

2021.

[Lei22] Douglas J Leith.

What Data Do The Google Dialer and Messages Apps On Android Send to Google?

Tech. rep. Trinity College Dublin, 2022.

[Leo+12] Ilias Leontiadis, Christos Efstratiou, Marco Picone, and

Cecilia Mascolo. “Don’t kill my ads! balancing privacy in an ad-supported

mobile application market”. In: Proceedings of the Twelfth Workshop on Mobile

Computing Systems & Applications. 2012, pp. 1–6.

[Li+14] Li Li, Alexandre Bartel, Jacqes Klein, and Yves Le Traon. “Automatically

Exploiting Potential Component Leaks in Android Applications”.

In: IEEE International Conference on Trust, Security and Privacy in Computing

and Communications. 2014.

[Li+15] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacqes Klein,

Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,

Damien Octeau, and Patrick Mcdaniel.

“IccTA: Detecting Inter-Component Privacy Leaks in Android Apps”.

In: Proceedings of the International Conference on Software Engineering. 2015.

[Li+16] Li Li, Tegawendé F Bissyandé, Jacqes Klein, and Yves Le Traon.

“An Investigation into the Use of Common Libraries in Android Apps”.

In: The IEEE International Conference on Software Analysis, Evolution, and

Reengineering (SANER 2016). 2016.

135

BIBLIOGRAPHY

[Li+17] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,

Alexandre Bartel, Damien Octeau, Jacqes Klein, and Le Traon.

“Static Analysis of Android Apps: A Systematic Literature Review”.

In: Information and Software Technology (2017).

[Li+21] Rui Li, Wenrui Diao, Zhou Li, Jianqi Du, and Shanqing Guo.

“Android Custom Permissions Demystified: From Privilege Escalation to

Design Shortcomings”. In: (2021).

[Liu+15] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan.

“Efficient Privilege De-Escalation for Ad Libraries in Mobile Apps”.

In: Proceedings of the International Conference on Mobile Systems, Applications,

and Services (MobiSys). 2015.

[LPL21] Haoyu Liu, Paul Patras, and Douglas J Leith. “Android Mobile OS Snooping

By Samsung, Xiaomi, Huawei and Realme Handsets”. 2021.

[Lu+12] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. “CHEX:

Statically Vetting Android Apps for Component Hijacking Vulnerabilities”.

In: Proceedings of the ACM Conference on Computer and Communication Security

(CCS). 2012.

[Ma+16] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqn Chen. “LibRadar: Fast and

Accurate Detection of Third-party Libraries in Android Apps”.

In: Proceedings of the International Conference on Software Engineering. 2016.

[Mar+12] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and

Srdjan Capkun. “Analysis of the Communication between Colluding

Applications on Modern Smartphones”. In: Proceedings of the Annual Computer

Security Applications Conference (ACSAC). 2012.

[MBN14] Yan Michalevsky, Dan Boneh, and Gabi Nakibly.

“Gyrophone: Recognizing Speech from Gyroscope Signals”.

In: Proceedings of the USENIX Security Symposium. 2014.

[Mic+15] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian,

Dan Boneh, and Gabi Nakibly.

“PowerSpy: Location Tracking Using Mobile Device Power Analysis”.

In: Proceedings of the USENIX Security Symposium. 2015.

136

BIBLIOGRAPHY

[MN21] Mehran Mahmoudi and Sarah Nadi.

“The Android Update Problem: An Empirical Study”. In: Proceedings of the

International Conference on Mining Software Repositories (MSR). 2021.

[MTN13] Aravind Machiry, Rohan Tahiliani, and Mayur Naik.

“DynoDroid: An Input Generation System for Android Apps”.

In: Proceedings of the Joint Meeting on Foundations of Software Engineering. 2013.

[NKZ10] Mohammad Nauman, Sohail Khan, and Xinwen Zhang.

“Apex: Extending Android Permission Model and Enforcement with

User-Defined Runtime Constraints”. In: Proceedings of the ACM Symposium on

Information, Computer and Communications Security. 2010.

[Pan+18] Elleen Pan, Jingjing Ren, Martina Lindorfer, Christo Wilson, and

David Choffnes. “Panoptispy: Characterizing Audio and Video Exfiltration

from Android Applications”.

In: Proceedings of the Privacy Enhancing Technologies Symposium (PETS) (2018).

[Ped+19] Sai Teja Peddinti, Igor Bilogrevic, Nina Taft, Martin Pelikan,

Úlfar Erlingsson, Pauline Anthonysamy, and Giles Hogben.

“Reducing Permission Requests in Mobile Apps”.

In: Proceedings of the Internet Measurement Conference (IMC). 2019.

[Pos+21] Andrea Possemato, Simone Aonzo, Davide Balzarotti, and

Yanick Fratantonio. “Trust, But Verify: A Longitudinal Analysis of Android

OEM Compliance and Customization”.

In: IEEE Symposium on Security and Privacy (SP). 2021.

[PWL20a] Ivan Pustogarov, Qian Wu, and David Lie.

“Ex-Vivo Dynamic Analysis Framework for Android Device Drivers”.

In: IEEE Symposium on Security and Privacy (SP). 2020.

[PWL20b] Ivan Pustogarov, Qian Wu, and David Lie.

“Ex-Vivo Dynamic Analysis Framework for Android Device Drivers”. In: (2020).

[Qia+14] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan.

“On Tracking Information Flows through JNI In Android Applications”. In:

Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

2014.

137

BIBLIOGRAPHY

[Qia+15] Chenxiong Qian, Xiapu Luo, Yu Le, and Guofei Gu.

“Vulhunter: Toward Discovering Vulnerabilities in Android Applications”.

In: IEEE Micro (2015).

[Raz+15] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan,

Christian Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson.

“Haystack: In Situ Mobile Traffic Analysis in User Space”.

In: arXiv preprint arXiv:1510.01419 (2015).

[Raz+18] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez,

Srikanth Sundaresan, Mark Allman, Christian Kreibich, and

Phillipa Gill. “Apps, Trackers, Privacy, and Regulators: A Global Study of the

Mobile Tracking Ecosystem”. In: (2018).

[Rea+19] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On,

Narseo Vallina-Rodriguez, and Serge Egelman.

“50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the

Android Permissions Systems”. In: (2019).

[Ren+18] Jingjing Ren, Martina Lindorfer, Daniel J Dubois, Ashwin Rao,

David Choffnes, and Narseo Vallina-Rodriguez.

“Bug Fixes, Improvements,… and Privacy Leaks”. In: (2018).

[Rey+18] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On,

Abbas Razaghpanah, Narseo Vallina-Rodriguez, and Serge Egelman.

““Won’t Somebody Think of the Children?” Examining COPPA Compliance at

Scale”.

In: Proceedings of the Privacy Enhancing Technologies Symposium (PETS) (2018).

[Sad+18] Alireza Sadeghi, Reyhaneh Jabbarvand, Negar Ghorbani,

Hamid Bagheri, and Sam Malek.

“A temporal permission analysis and enforcement framework for android”.

In: Proceedings of the 40th International Conference on Software Engineering.

2018, pp. 846–857.

[Sar+12] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju,

Cristina Nita-Rotaru, and Ian Molloy.

“Android Permissions: A Perspective Combining Risks and Benefits”.

In: Proceedings of the ACM Symposium on Access Control Models and

Technologies (SACMAT). 2012.

138

BIBLIOGRAPHY

[SBM15] Alireza Sadeghi, Hamid Bagheri, and Sam Malek.

“Analysis of android inter-app security vulnerabilities using covert”.

In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

Vol. 2. IEEE. 2015, pp. 725–728.

[SC13] James Sellwood and Jason Crampton.

“Sleeping Android: The danger of Dormant Permissions”. In: Proceedings of the

ACM workshop on Security and Privacy in Smartphones & Mobile Devices. 2013.

[Spr+17] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and

Stefan Mangard. “Systematic Classification of Side-channel Attacks: A Case

Study for Mobile Devices”. In: IEEE Communications Surveys & Tutorials (2017).

[SQH17] Wei Song, Xiangxing Qian, and Jeff Huang.

“EHBDroid: Beyond GUI Testing for Android Applications”. In: IEEE/ACM

International Conference on Automated Software Engineering (ASE). 2017.

[SR14] Raimondas Sasnauskas and John Regehr.

“Intent Fuzzer: Crafting Intents of Death”. In: Proceedings of the Joint

International Workshop on Dynamic Analysis (WODA) and Software and System

Performance Testing, Debugging, and Analytics (PERTEA). 2014.

[Sto18] Maddie Stone. “Unpacking the Packed Unpacker: Reversing an Android

Anti-Analysis Native Library”. In: (2018).

[Su+17] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao,

Geguang Pu, Yang Liu, and Zhendong Su.

“Guided, Stochastic Model-Based GUI Testing of Android Apps”.

In: Proceedings of the Joint Meeting on Foundations of Software Engineering. 2017.

[SXA16] Laurent Simon, Wenduan Xu, and Ross Anderson.

“Don’t Interrupt Me While I Type: Inferring Text Entered Through Gesture

Typing on Android Keyboards”.

In: Proceedings of the Privacy Enhancing Technologies Symposium (PETS) (2016).

[Tam+15] Kimberly Tam, Aristide Fattori, Salahuddin Khan, and

Lorenzo Cavallaro.

“CopperDroid: Automatic Reconstruction of Android Malware Behaviors”. In:

Proceedings of the Network and Distributed System Security Symposium (NDSS).

2015.

139

BIBLIOGRAPHY

[Tia+18] Dave Jing Tian, Grant Hernandez, Joseph I Choi, Vanessa Frost,

Christie Raules, Patrick Traynor, Hayawardh Vijayakumar,

Lee Harrison, Amir Rahmati, Michael Grace, et al.

“ATtention Spanned: Comprehensive Vulnerability Analysis of AT Commands

Within the Android Ecosystem”.

In: Proceedings of the USENIX Security Symposium. 2018.

[Tun+18] Güliz Seray Tuncay, Soteris Demetriou, Karan Ganju, and Carl Gunter.

“Resolving the Predicament of Android Custom Permissions”. In: (2018).

[VCC11] Timothy Vidas, Nicolas Christin, and Lorrie Cranor.

“Curbing Android Permission Creep”.

In: Proceedings of the International Conference on World Wide Web (WWW).

2011.

[VR+12] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore,

Yan Grunenberger, Konstantina Papagiannaki, Hamed Haddadi, and

Jon Crowcroft.

“Breaking for Commercials: Characterizing Mobile Advertising”.

In: Proceedings of the Internet Measurement Conference (IMC). 2012.

[VR+13] Narseo Vallina-Rodriguez, Jon Crowcroft, Alessandro Finamore,

Yan Grunenberger, and Konstantina Papagiannaki. “When Assistance

Becomes Dependence: Characterizing the Costs and Inefficiencies Of A-GPS”.

In: Proceedings of the SIGMOBILE Mobile Computing and Communications

Review (2013).

[VR+14] Narseo Vallina-Rodriguez, Johanna Amann, Christian Kreibich,

Nicholas Weaver, and Vern Paxson.

“A Tangled Mass: The Android Root Certificate Stores”.

In: Proceedings of the International Conference on Emerging Networking

EXperiments and Technologies (CoNEXT). 2014.

[VRH98] Raja Vallee-Rai and Laurie J Hendren.

“Jimple: Simplifying Java bytecode for Analyses and Transformations”.

In: (1998).

[Wan+18a] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez,

Yao Guo, Li Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. “Beyond Google

140

BIBLIOGRAPHY

Play: A Large-Scale Comparative Study of Chinese Android App Markets”.

In: Proceedings of the Internet Measurement Conference (IMC). 2018.

[Wan+18b] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez,

Yao Guo, Li Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. “Beyond Google

Play: A Large-Scale Comparative Study of Chinese Android App Markets”.

In: Proceedings of the Internet Measurement Conference (IMC). 2018.

[Wei+14] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby.

“Amandroid: A Precise and General Inter-component Data Flow Analysis

Framework for Security Vetting of Android Apps”. In: Proceedings of the ACM

Conference on Computer and Communication Security (CCS). 2014.

[Wei+18] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang.

“JN-SAF: Precise and Efficient NDK/JNI-aware Inter-Language Static Analysis

Framework for Security Vetting of Android Applications with Native Code”.

In: Proceedings of the ACM Conference on Computer and Communication Security

(CCS). 2018.

[Wij+15] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman,

David Wagner, and Konstantin Beznosov.

“Android Permissions Remystified: A Field Study on Contextual Integrity”.

In: Proceedings of the USENIX Security Symposium. 2015.

[Wog+14] Erik Ramsgaard Wognsen, Henrik Søndberg Karlsen, Mads Chr Olesen,

and René Rydhof Hansen. “Formalisation and Analysis of Dalvik Bytecode”.

In: Science of Computer Programming (2014).

[WRO18] Fengguo Wei, Sankardas Roy, and Xinming Ou.

“Amandroid: A precise and general inter-component data flow analysis

framework for security vetting of android apps”.

In: ACM Transactions on Privacy and Security (TOPS) (2018).

[Wu+13] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang.

“The Impact of Vendor Customizations on Android Security”. In: Proceedings of

the ACM Conference on Computer and Communication Security (CCS). 2013.

[Wu+19] Daoyuan Wu, Debin Gao, Rocky K. C. Chang, En He, Eric K. T. Cheng, and

Robert H. Deng. “Understanding Open Ports In Android Applications:

Discovery, Diagnosis, And Security Assessment”. In: Proceedings of the Network

and Distributed System Security Symposium (NDSS) (2019).

141

BIBLIOGRAPHY

[Xue+18] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin Zhou, Yuru Shao,

and Alvin TS Chan. “NDroid: Toward Tracking Information Flows across

Multiple Android Contexts”.

In: IEEE Transactions on Information Forensics and Security (2018).

[You+15] Wei You, Bin Liang, Jingzhe Li, Wenchang Shi, and Xiangyu Zhang.

“Android Implicit Information Flow Demystified”. In: Proceedings of the ACM

Conference on Computer and Communication Security (CCS). 2015.

[YY12] Zhemin Yang and Min Yang. “Leakminer: Detect Information Leakage on

Android with Static Taint Analysis”.

In: Third World Congress on Software Engineering. 2012.

[ZG16] Yuri Zhauniarovich and Olga Gadyatskaya. “Small Changes, Big Changes:

An Updated View On The Android Permission System”. In: Proceedings of the

International Symposium on Research in Attacks, Intrusions, and Defenses (RAID).

2016.

[Zho+14] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and

XiaoFeng Wang. “The Peril Of Fragmentation: Security Hazards In Android

Device Driver Customizations”.

In: IEEE Symposium on Security and Privacy (SP). 2014.

[ZSL14] Min Zheng, Mingshen Sun, and John CS Lui.

“DroidRay: a Security Evaluation System for Customized Android Firmwares”.

In: Proceedings of the ACM symposium on Information, computer and

communications security (ASIA CCS). 2014.

[Adg] AdGuard - Meizu Incompatibilities.

https://github.com/AdguardTeam/AdguardForAndroid/issues/800.

Accessed on 29th of April, 2022.

[Ado] Commit b858dfda50: Implement system data migration support.

https://android.googlesource.com/platform/frameworks/base/+/

b858dfda5012a1040927ed62c3bb856c3294d882.

Accessed on 29th of April, 2022.

[Adu] Kryptowire - KRYPTOWIRE DISCOVERS MOBILE PHONE FIRMWARE THAT

TRANSMITTED PERSONALLY IDENTIFIABLE INFORMATION (PII) WITHOUT

USER CONSENT OR DISCLOSURE.

http://www.kryptowire.com/adups_security_analysis.html.

142

https://github.com/AdguardTeam/AdguardForAndroid/issues/800
https://android.googlesource.com/platform/frameworks/base/+/b858dfda5012a1040927ed62c3bb856c3294d882
https://android.googlesource.com/platform/frameworks/base/+/b858dfda5012a1040927ed62c3bb856c3294d882
http://www.kryptowire.com/adups_security_analysis.html

BIBLIOGRAPHY

Accessed on 29th of April, 2022.

[Aep] Análisis del software preinstalado en dispositivos Android y riesgos para la

privacidad de los usuarios.

https://www.aepd.es/es/prensa-y-comunicacion/notas-de-

prensa/analisis-del-software-preinstalado-en-dispositivos-

android-y.

Accessed on 29th of April, 2022.

[Aet] Aetherpal.

https://aetherpal.com/.

Accessed on 29th of April, 2022.

[Amaa] Amazon Appstore For Android.

https://www.amazon.com/gp/feature.html?docId=1002999431.

Accessed on 29th of April, 2022.

[Amab] Amazon Mechanical Turk.

https://www.mturk.com/.

Accessed on 29th of April, 2022.

[Amac] Amazon suspends sales of Blu phones for including preloaded spyware, again.

https://www.theverge.com/2017/7/31/16072786/amazon-blu-

suspended-android-spyware-user-data-theft.

Accessed on 29th of April, 2022.

[Amad] Integrate Amazon Device Messaging (ADM).

https://developer.amazon.com/docs/video-skills-fire-tv-

apps/integrate-adm.html.

[Amae] Integrate Your App with the Fire TV Launcher.

https://developer.amazon.com/docs/catalog/integrate-with-

launcher.html.

[Anda] Androguard.

https://github.com/androguard/androguard/.

Accessed on 29th of April, 2022.

[Andb] Android — Certified.

https://www.android.com/certified/.

Accessed on 29th of April, 2022.

143

https://www.aepd.es/es/prensa-y-comunicacion/notas-de-prensa/analisis-del-software-preinstalado-en-dispositivos-android-y
https://www.aepd.es/es/prensa-y-comunicacion/notas-de-prensa/analisis-del-software-preinstalado-en-dispositivos-android-y
https://www.aepd.es/es/prensa-y-comunicacion/notas-de-prensa/analisis-del-software-preinstalado-en-dispositivos-android-y
https://aetherpal.com/
https://www.amazon.com/gp/feature.html?docId=1002999431
https://www.mturk.com/
https://www.theverge.com/2017/7/31/16072786/amazon-blu-suspended-android-spyware-user-data-theft
https://www.theverge.com/2017/7/31/16072786/amazon-blu-suspended-android-spyware-user-data-theft
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integrate-adm.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integrate-adm.html
https://developer.amazon.com/docs/catalog/integrate-with-launcher.html
https://developer.amazon.com/docs/catalog/integrate-with-launcher.html
https://github.com/androguard/androguard/
https://www.android.com/certified/

BIBLIOGRAPHY

[Andc] Android 10 Release Notes | Android Open Source Project.

https://source.android.com/setup/start/android-10-

release#permissions.

Accessed on 29th of April, 2022.

[Andd] Android 8 Release Notes | Android Open Source Project.

https://developer.android.com/about/versions/oreo/android-

8.0#perms.

Accessed on 29th of April, 2022.

[Ande] Android Certified Partners — brands.

https://www.android.com/certified/partners/.

Accessed on 29th of April, 2022.

[Andf] Android Certified Partners — ODMs.

https://www.android.com/certified/partners/#tab-panel-odms.

Accessed on 29th of April, 2022.

[Andg] Android Compatibility Program Overview.

https://source.android.com/compatibility/overview.

Accessed on 29th of April, 2022.

[Andh] Android Comptability Document — Permissions.

https://source.android.com/compatibility/android-

cdd#9_1_permissions.

Accessed on 29th of April, 2022.

[Andi] Android Developer Documentation.

https://developer.android.com/.

Accessed on 29th of April, 2022.

[Andj] Android Developers.

https://developer.android.com/guide/topics/manifest/permission-

element.html#plevel.

Accessed on 29th of April, 2022.

[Andk] Android Developers | Announcing the Android 1.0 SDK, release 1.

https://android-developers.googleblog.com/2008/09/announcing-

android-10-sdk-release-1.html.

Accessed on 29th of April, 2022.

[Andl] Android founder: We aimed to make a camera OS.

144

https://source.android.com/setup/start/android-10-release#permissions
https://source.android.com/setup/start/android-10-release#permissions
https://developer.android.com/about/versions/oreo/android-8.0#perms
https://developer.android.com/about/versions/oreo/android-8.0#perms
https://www.android.com/certified/partners/
https://www.android.com/certified/partners/#tab-panel-odms
https://source.android.com/compatibility/overview
https://source.android.com/compatibility/android-cdd#9_1_permissions
https://source.android.com/compatibility/android-cdd#9_1_permissions
https://developer.android.com/
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html

BIBLIOGRAPHY

https://www.pcworld.com/article/451350/android-founder-we-aimed-

to-make-a-camera-os.html.

Accessed on 29th of April, 2022.

[Andm] Android NDK | Android Developers.

https://developer.android.com/ndk/.

Accessed on 29th of April, 2022.

[Andn] Android Observatory.

https://androidobservatory.com/home.

Accessed on 29th of April, 2022.

[Ando] Android Studio code annotations.

https://android.googlesource.com/platform/tools/adt/idea/+/refs/

heads/mirror-goog-studio-master-dev/android/annotations/android/.

Accessed on 29th of April, 2022.

[Andp] Android Version Distribution statistics.

https://www.xda-developers.com/android-version-distribution-

statistics-android-studio/.

Accessed on 29th of April, 2022.

[Andq] Androwarn–Yet another static code analyzer for malicious Android applications.

https://github.com/maaaaz/androwarn.

Accessed on 29th of April, 2022.

[Andr] AndroZoo.

https://androzoo.uni.lu/.

Accessed on 29th of April, 2022.

[Ands] Cars | Android Developers.

https://developer.android.com/reference/android/car/Car.

[Andt] Context | Android Developers.

https://developer.android.com/reference/android/content/Context.

[Andu] Design an Android Device.

https://source.android.com/compatibility.

Accessed on 29th of April, 2022.

[Andv] Fresher OS with Projects Treble and Mainline.

https://android-developers.googleblog.com/2019/05/fresher-os-

with-projects-treble-and-mainline.html.

145

https://www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-camera-os.html
https://www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-camera-os.html
https://developer.android.com/ndk/
https://androidobservatory.com/home
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://github.com/maaaaz/androwarn
https://androzoo.uni.lu/
https://developer.android.com/reference/android/car/Car
https://developer.android.com/reference/android/content/Context
https://source.android.com/compatibility
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html

BIBLIOGRAPHY

Accessed on 29th of April, 2022.

[Andw] Google’s Android OS: Past, Present, and Future.

https://www.phonearena.com/news/Googles-Android-OS-Past-Present-

and-Future_id21273.

Accessed on 29th of April, 2022.

[Andx] Here comes Treble: A modular base for Android.

https://android-developers.googleblog.com/2017/05/here-comes-

treble-modular-base-for.html.

Accessed on 29th of April, 2022.

[Andy] Industry Leaders Announce Open Platform for Mobile Devices.

http://www.openhandsetalliance.com/press_110507.html.

Accessed on 29th of April, 2022.

[Andz] Intents and Intent Filters - Android Developers.

https://developer.android.com/guide/components/intents-filters.

Accessed on 29th of April, 2022.

[Andaa] One-time Permissions | Android Developers.

https:

//developer.android.com/training/permissions/requesting#one-time.

Accessed on 29th of April, 2022.

[Andab] permission | Android Developers.

https://developer.android.com/guide/topics/manifest/permission-

element#desc.

[Andac] Permissions updates in Android 11 | Android Open Source Project.

https:

//developer.android.com/about/versions/11/privacy/permissions.

Accessed on 29th of April, 2022.

[Andad] R.attr.

https://developer.android.com/reference/android/R.attr.html#

protectionLevel.

Accessed on 29th of April, 2022.

[Andae] R.attr | Android developers | knownCerts.

https:

//developer.android.com/reference/android/R.attr#knownCerts.

146

https://www.phonearena.com/news/Googles-Android-OS-Past-Present-and-Future_id21273
https://www.phonearena.com/news/Googles-Android-OS-Past-Present-and-Future_id21273
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
http://www.openhandsetalliance.com/press_110507.html
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/training/permissions/requesting#one-time
https://developer.android.com/training/permissions/requesting#one-time
https://developer.android.com/guide/topics/manifest/permission-element#desc
https://developer.android.com/guide/topics/manifest/permission-element#desc
https://developer.android.com/about/versions/11/privacy/permissions
https://developer.android.com/about/versions/11/privacy/permissions
https://developer.android.com/reference/android/R.attr.html#protectionLevel
https://developer.android.com/reference/android/R.attr.html#protectionLevel
https://developer.android.com/reference/android/R.attr#knownCerts
https://developer.android.com/reference/android/R.attr#knownCerts

BIBLIOGRAPHY

Accessed on 29th of April, 2022.

[Andaf] There are over 3 billion active Android devices.

https://www.theverge.com/2021/5/18/22440813/android-devices-

active-number-smartphones-google-2021.

Accessed on 29th of April, 2022.

[Andag] This is the droid you’re looking for.

https://android-developers.googleblog.com/2007/11/posted-by-

jason-chen-android-advocate.html.

Accessed on 29th of April, 2022.

[Andah] Tristate Location Permissions | Android Open Source Project.

https://source.android.com/devices/tech/config/tristate-perms.

Accessed on 29th of April, 2022.

[Andai] UI/Application Exerciser Monkey.

https://developer.android.com/studio/test/other-testing-

tools/monkey.

Accessed on 29th of April, 2022.

[Andaj] VPN Service.

https://developer.android.com/reference/android/net/VpnService.

Accessed on 29th of April, 2022.

[Andak] What is “com,facebook,app manager” and why is it trying to download Instagram,

Facebook, and Messenger.

https://forums.androidcentral.com/android-apps/547447-what-com-

facebook-app-manager-why-trying-download-instagram-facebook-

messenge.html.

Accessed on 29th of April, 2022.

[Ant] Ant+.

https://www.thisisant.com.

Accessed on 29th of April, 2022.

[Aosa] Android Developers | PackageManager.

https://developer.android.com/reference/android/content/pm/

PackageManager.

Accessed on 29th of April, 2022.

[Aosb] Android Open Source Project.

147

https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://android-developers.googleblog.com/2007/11/posted-by-jason-chen-android-advocate.html
https://android-developers.googleblog.com/2007/11/posted-by-jason-chen-android-advocate.html
https://source.android.com/devices/tech/config/tristate-perms
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/reference/android/net/VpnService
https://forums.androidcentral.com/android-apps/547447-what-com-facebook-app-manager-why-trying-download-instagram-facebook-messenge.html
https://forums.androidcentral.com/android-apps/547447-what-com-facebook-app-manager-why-trying-download-instagram-facebook-messenge.html
https://forums.androidcentral.com/android-apps/547447-what-com-facebook-app-manager-why-trying-download-instagram-facebook-messenge.html
https://www.thisisant.com
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager

BIBLIOGRAPHY

https://source.android.com/.

Accessed on 29th of April, 2022.

[Aosc] AndroidManfiest.xml.

https://android.googlesource.com/platform/frameworks/base/+/

refs/heads/master/core/res/AndroidManifest.xml.

Accessed on 29th of April, 2022.

[Aosd] AndroidManifest.xml | Android Open Source Project.

https://android.googlesource.com/platform/frameworks/base/+/

refs/heads/master/core/res/AndroidManifest.xml.

Accessed on 29th of April, 2022.

[Apea] APEX File Format.

https://source.android.com/devices/tech/ota/apex.

Accessed on 29th of April, 2022.

[Apeb] APEX Manager.

https://source.android.com/devices/tech/ota/apex#apex_manager.

Accessed on 29th of April, 2022.

[Apka] APK Mirror App Store.

https://www.apkmirror.com/.

Accessed on 29th of April, 2022.

[Apkb] APK Monk App Store.

https://www.apkmonk.com/.

Accessed on 29th of April, 2022.

[Apkc] Apktool–A tool for reverse engineering Android apk files.

https://ibotpeaches.github.io/Apktool/.

Accessed on 29th of April, 2022.

[Appa] Application Manifest Overview.

https://developer.android.com/guide/topics/manifest/manifest-

intro.html.

Accessed on 29th of April, 2022.

[Appb] Appsee — Features.

https://www.appsee.com/features.

Accessed on 29th of April, 2022.

148

https://source.android.com/
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
https://source.android.com/devices/tech/ota/apex
https://source.android.com/devices/tech/ota/apex#apex_manager
https://www.apkmirror.com/
https://www.apkmonk.com/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://www.appsee.com/features

BIBLIOGRAPHY

[Appc] Appsee Mobile App Analytics.

https://www.appsee.com/.

Accessed on 29th of April, 2022.

[Appd] Commit 33f5ddd: Add permissions associated with app ops.

https://android.googlesource.com/platform/frameworks/base/+/

33f5ddd1bea21296938f2cba196f95d223aa247c.

Accessed on 29th of April, 2022.

[Appe] Commit a06de0f: New ”app ops” service.

https://android.googlesource.com/platform/frameworks/base/+/

a06de0f29b58df9246779cc4bfd8f06f7205ddb6.

Accessed on 29th of April, 2022.

[Appf] Market share development per Android phone manufacturer.

https://www.appbrain.com/stats/top-manufacturers.

[Appg] Monetize, advertise and analyze Android apps.

www.appbrain.com/.

Accessed on 29th of April, 2022.

[Asua] Asurion.

https://www.asurion.com/.

Accessed on 29th of April, 2022.

[Asub] Hackers Hijacked ASUS Software Updates to Install Backdoors on Thousands of

Computers.

https://motherboard.vice.com/en_us/article/pan9wn/hackers-

hijacked-asus-software-updates-to-install-backdoors-on-

thousands-of-computers.

Accessed on 29th of April, 2022.

[Baia] Baidu Android Appstore.

https://shouji.baidu.com/.

Accessed on 29th of April, 2022.

[Baib] Baidu App Store.

https://shouji.baidu.com/.

Accessed on 29th of April, 2022.

[Baic] Baidu Geocoding API.

http://api.map.baidu.com/lbsapi/geocoding-api.htm.

149

https://www.appsee.com/
https://android.googlesource.com/platform/frameworks/base/+/33f5ddd1bea21296938f2cba196f95d223aa247c
https://android.googlesource.com/platform/frameworks/base/+/33f5ddd1bea21296938f2cba196f95d223aa247c
https://android.googlesource.com/platform/frameworks/base/+/a06de0f29b58df9246779cc4bfd8f06f7205ddb6
https://android.googlesource.com/platform/frameworks/base/+/a06de0f29b58df9246779cc4bfd8f06f7205ddb6
https://www.appbrain.com/stats/top-manufacturers
www.appbrain.com/
https://www.asurion.com/
https://motherboard.vice.com/en_us/article/pan9wn/hackers-hijacked-asus-software-updates-to-install-backdoors-on-thousands-of-computers
https://motherboard.vice.com/en_us/article/pan9wn/hackers-hijacked-asus-software-updates-to-install-backdoors-on-thousands-of-computers
https://motherboard.vice.com/en_us/article/pan9wn/hackers-hijacked-asus-software-updates-to-install-backdoors-on-thousands-of-computers
https://shouji.baidu.com/
https://shouji.baidu.com/
http://api.map.baidu.com/lbsapi/geocoding-api.htm

BIBLIOGRAPHY

Accessed on 29th of April, 2022.

[Baid] Baidu SDK.

https://developer.baidu.com/.

Accessed on 29th of April, 2022.

[Bgc] Compatibility Test Suite | Android Developers.

https://source.android.com/compatibility/cts.

Accessed on 29th of April, 2022.

[Bgv] Vendor Test Suite (VTS) and Infrastructure | Android Developers.

https://source.android.com/compatibility/vts.

Accessed on 29th of April, 2022.

[Bil] Android Developers - AIDL to Google Play Billing Library migration guide.

https://developer.android.com/google/play/billing/migrate.

Accessed on 29th of April, 2022.

[Ccp] California Consumer Privacy Act.

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?

bill_id=201720180AB375.

Accessed on 29th of April, 2022.

[Cer] Android Certified Partners.

https://www.android.com/certified/partners/.

Accessed on 29th of April, 2022.

[Coma] Commit 0dec6c042cf: Create recents protectionLevel.

https://android.googlesource.com/platform/frameworks/base/+/

0dec6c042cf3752cd853eab4a0909c7afc6c23f5.

Accessed on 29th of April, 2022.

[Comb] Commit 15707b3f4df: Define protection level for document manager.

https://android.googlesource.com/platform/frameworks/base/+/

15707b3f4df8f44881643adfc369b3cd50bc5598.

Accessed on 29th of April, 2022.

[Comc] Commit 1fa23ed08ac: [CDM] Bypass location setting when scanning for devices.

https://android.googlesource.com/platform/frameworks/base/+/

1fa23ed08ac4c2113319097d03e30b558dd37698.

Accessed on 29th of April, 2022.

150

https://developer.baidu.com/
https://source.android.com/compatibility/cts
https://source.android.com/compatibility/vts
https://developer.android.com/google/play/billing/migrate
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://www.android.com/certified/partners/
https://android.googlesource.com/platform/frameworks/base/+/0dec6c042cf3752cd853eab4a0909c7afc6c23f5
https://android.googlesource.com/platform/frameworks/base/+/0dec6c042cf3752cd853eab4a0909c7afc6c23f5
https://android.googlesource.com/platform/frameworks/base/+/15707b3f4df8f44881643adfc369b3cd50bc5598
https://android.googlesource.com/platform/frameworks/base/+/15707b3f4df8f44881643adfc369b3cd50bc5598
https://android.googlesource.com/platform/frameworks/base/+/1fa23ed08ac4c2113319097d03e30b558dd37698
https://android.googlesource.com/platform/frameworks/base/+/1fa23ed08ac4c2113319097d03e30b558dd37698

BIBLIOGRAPHY

[Comd] Commit 27eef5cfcdd: Add support for knownSigner permission protection flag.

https://android.googlesource.com/platform/frameworks/base/+/

27eef5cfcdd21bdf549f59fc7a150a9811e1835a.

Accessed on 29th of April, 2022.

[Come] Commit 2a1376d9dfb: Expose removed permissions flag as system API.

https://android.googlesource.com/platform/frameworks/base/+/

2a1376d9dfb362a18ba110d8e172f96021f1d879.

Accessed on 29th of April, 2022.

[Comf] Commit 2ca2c878713: More adjustments to permissions.

https://android.googlesource.com/platform/frameworks/base/+/

2ca2c8787130506d350d997c18bbc274faf88e37.

Accessed on 29th of April, 2022.

[Comg] Commit 596437fd4e0: Added a new set of permissions for DeviceConfig API.

https://android.googlesource.com/platform/frameworks/base/+/

596437fd4e0941df378558a374c172148bb37b7c.

Accessed on 29th of April, 2022.

[Comh] Commit 5a15b551076: Added a new ”incidentReportApprover” permission

protection flag.

https://android.googlesource.com/platform/frameworks/base/+/

5a15b55107651968312f39a830ddb26909b9d362.

Accessed on 29th of April, 2022.

[Comi] Commit 5f303659c23: Added a new ”wellbeing” protection flag.

https://android.googlesource.com/platform/frameworks/base/+/

5f303659c23d7d0a944aa51edb9b3353da1d497d.

Accessed on 29th of April, 2022.

[Comj] Commit 8126b1fe0f0: Added a new ”retailDemo” protection level.

https://android.googlesource.com/platform/frameworks/base/+/

8126b1fe0f09f359f3ec3b80bc5717e101e295b8.

Accessed on 29th of April, 2022.

[Comk] Commit a3968751099: Add role as a new permission protection flag.

https://android.googlesource.com/platform/frameworks/base/+/

a3968751099bd85f6a20673a8556b033f82357a3.

Accessed on 29th of April, 2022.

151

https://android.googlesource.com/platform/frameworks/base/+/27eef5cfcdd21bdf549f59fc7a150a9811e1835a
https://android.googlesource.com/platform/frameworks/base/+/27eef5cfcdd21bdf549f59fc7a150a9811e1835a
https://android.googlesource.com/platform/frameworks/base/+/2a1376d9dfb362a18ba110d8e172f96021f1d879
https://android.googlesource.com/platform/frameworks/base/+/2a1376d9dfb362a18ba110d8e172f96021f1d879
https://android.googlesource.com/platform/frameworks/base/+/2ca2c8787130506d350d997c18bbc274faf88e37
https://android.googlesource.com/platform/frameworks/base/+/2ca2c8787130506d350d997c18bbc274faf88e37
https://android.googlesource.com/platform/frameworks/base/+/596437fd4e0941df378558a374c172148bb37b7c
https://android.googlesource.com/platform/frameworks/base/+/596437fd4e0941df378558a374c172148bb37b7c
https://android.googlesource.com/platform/frameworks/base/+/5a15b55107651968312f39a830ddb26909b9d362
https://android.googlesource.com/platform/frameworks/base/+/5a15b55107651968312f39a830ddb26909b9d362
https://android.googlesource.com/platform/frameworks/base/+/5f303659c23d7d0a944aa51edb9b3353da1d497d
https://android.googlesource.com/platform/frameworks/base/+/5f303659c23d7d0a944aa51edb9b3353da1d497d
https://android.googlesource.com/platform/frameworks/base/+/8126b1fe0f09f359f3ec3b80bc5717e101e295b8
https://android.googlesource.com/platform/frameworks/base/+/8126b1fe0f09f359f3ec3b80bc5717e101e295b8
https://android.googlesource.com/platform/frameworks/base/+/a3968751099bd85f6a20673a8556b033f82357a3
https://android.googlesource.com/platform/frameworks/base/+/a3968751099bd85f6a20673a8556b033f82357a3

BIBLIOGRAPHY

[Coml] Commit b9893a600ea: Add internal as a new permission protection level.

https://android.googlesource.com/platform/frameworks/base/+/

b9893a600ea8c047cebb6a4a352322916ba8eaca.

Accessed on 29th of April, 2022.

[Comm] Commit cd7695dda05: Add a new ”appPredictor” protection flag.

https://android.googlesource.com/platform/frameworks/base/+/

cd7695dda0576a954745a59d3feb579bcb644795.

Accessed on 29th of April, 2022.

[Comn] Commit cfbfafe1b9c: Additional permissions aren’t properly disabled after

toggling them off.

https://android.googlesource.com/platform/frameworks/base/+/

cfbfafe1b9ca2fd135a4fb6b528b3829830803bf.

Accessed on 29th of April, 2022.

[Como] Commit d563e937f2d: Make storage a restricted permission - framework.

https://android.googlesource.com/platform/frameworks/base/+/

d563e937f2d2a6d256b1284c3119c8787faf156d.

Accessed on 29th of April, 2022.

[Comp] Commit d7087b25ce3: Introduce new permissionFlag.

https://android.googlesource.com/platform/frameworks/base/+/

d7087b25ce394ec54cc6ec8e2852aee0a12c0e8a.

Accessed on 29th of April, 2022.

[Comq] Commit d8eb8b2690d: Restricted permission mechanism - framework.

https://android.googlesource.com/platform/frameworks/base/+/

d8eb8b2690dd27d5ffe6262dd8ce8594ec8028a6.

Accessed on 29th of April, 2022.

[Cop] COPPA - Children’s Online Privacy Protection Act.

http://coppa.org/.

Accessed on 29th of April, 2022.

[Cusa] Android Developers - Define a Custom App Permission.

https://developer.android.com/guide/topics/permissions/defining.

Accessed on 29th of April, 2022.

[Cusb] Define a Custom Permission.

https://developer.android.com/guide/topics/permissions/defining.

152

https://android.googlesource.com/platform/frameworks/base/+/b9893a600ea8c047cebb6a4a352322916ba8eaca
https://android.googlesource.com/platform/frameworks/base/+/b9893a600ea8c047cebb6a4a352322916ba8eaca
https://android.googlesource.com/platform/frameworks/base/+/cd7695dda0576a954745a59d3feb579bcb644795
https://android.googlesource.com/platform/frameworks/base/+/cd7695dda0576a954745a59d3feb579bcb644795
https://android.googlesource.com/platform/frameworks/base/+/cfbfafe1b9ca2fd135a4fb6b528b3829830803bf
https://android.googlesource.com/platform/frameworks/base/+/cfbfafe1b9ca2fd135a4fb6b528b3829830803bf
https://android.googlesource.com/platform/frameworks/base/+/d563e937f2d2a6d256b1284c3119c8787faf156d
https://android.googlesource.com/platform/frameworks/base/+/d563e937f2d2a6d256b1284c3119c8787faf156d
https://android.googlesource.com/platform/frameworks/base/+/d7087b25ce394ec54cc6ec8e2852aee0a12c0e8a
https://android.googlesource.com/platform/frameworks/base/+/d7087b25ce394ec54cc6ec8e2852aee0a12c0e8a
https://android.googlesource.com/platform/frameworks/base/+/d8eb8b2690dd27d5ffe6262dd8ce8594ec8028a6
https://android.googlesource.com/platform/frameworks/base/+/d8eb8b2690dd27d5ffe6262dd8ce8594ec8028a6
http://coppa.org/
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining

BIBLIOGRAPHY

Accessed on 29th of April, 2022.

[Data] Dataset of defined custom permissions.

https:

//androidobservatory.com/files/defined_perms_all_release.json.xz.

[Datb] Dataset of requested custom permissions.

https://androidobservatory.com/files/requested_perms_all_

release.json.xz.

[Dev] Commit e639da7: New development permissions.

https://android.googlesource.com/platform/frameworks/base/+/

e639da7baa23121e35aa06d6e182558e0e755696.

Accessed on 29th of April, 2022.

[Dex] Dextripador | A tool to extract the DEX file from ODEX compiled ahead of time

version.

https://github.com/Android-Observatory/DEXtripador.

Accessed on 29th of April, 2022.

[Dig] Digital Turbine - Privacy Policy.

https://www.digitalturbine.com/privacy-policy/.

Accessed on 29th of April, 2022.

[Dr] Dr Web. Trojan preinstalled on Android devices infects applications’ processes and

downloads malicious modules.

http://news.drweb.com/news/?i=11390&lng=en.

Accessed on 29th of April, 2022.

[Dtb] Mobile Posse acquired by Digital Turbine.

https://www.crunchbase.com/acquisition/mandalay-digital-group-

acquires-mobile-posse--1e380e32.

Accessed on 29th of April, 2022.

[Dum] Manifest.permission — Android Developpers.

https://developer.android.com/reference/android/Manifest.

permission.html#DUMP.

Accessed on 29th of April, 2022.

[Eph] Commit c19706a: Add ephemeral protection level.

https://android.googlesource.com/platform/frameworks/base/+/

c19706a937abc5d025a59b354b3a0d89e7d62805.

153

https://androidobservatory.com/files/defined_perms_all_release.json.xz
https://androidobservatory.com/files/defined_perms_all_release.json.xz
https://androidobservatory.com/files/requested_perms_all_release.json.xz
https://androidobservatory.com/files/requested_perms_all_release.json.xz
https://android.googlesource.com/platform/frameworks/base/+/e639da7baa23121e35aa06d6e182558e0e755696
https://android.googlesource.com/platform/frameworks/base/+/e639da7baa23121e35aa06d6e182558e0e755696
https://github.com/Android-Observatory/DEXtripador
https://www.digitalturbine.com/privacy-policy/
http://news.drweb.com/news/?i=11390&lng=en
https://www.crunchbase.com/acquisition/mandalay-digital-group-acquires-mobile-posse--1e380e32
https://www.crunchbase.com/acquisition/mandalay-digital-group-acquires-mobile-posse--1e380e32
https://developer.android.com/reference/android/Manifest.permission.html#DUMP
https://developer.android.com/reference/android/Manifest.permission.html#DUMP
https://android.googlesource.com/platform/frameworks/base/+/c19706a937abc5d025a59b354b3a0d89e7d62805
https://android.googlesource.com/platform/frameworks/base/+/c19706a937abc5d025a59b354b3a0d89e7d62805

BIBLIOGRAPHY

Accessed on 29th of April, 2022.

[Est] Estimote — indoor location with bluetooth beacons and mesh.

https://estimote.com/.

Accessed on 29th of April, 2022.

[Exu] EXUS.

https://www.exus.co.uk.

Accessed on 29th of April, 2022.

[Fac] Facebook Gave Device Makers Deep Access to Data on Users and Friends.

https:

//www.nytimes.com/interactive/2018/06/03/technology/facebook-

device-partners-users-friends-data.html.

Accessed on 29th of April, 2022.

[Fin] Google Issue Tracker - Why Google play services dependency automatically added

com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_SERVICE

permission.

https://issuetracker.google.com/issues/78380811#comment22.

Accessed on 29th of April, 2022.

[Ftc] Mobile Advertising Network InMobi Settles FTC Charges It Tracked Hundreds of

Millions of Consumers’ Locations Without Permission.

https://www.ftc.gov/news-events/news/press-

releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-

charges-it-tracked-hundreds-millions-consumers.

Accessed on 29th of April, 2022.

[Gcma] Google Cloud Messaging.

https://developers.google.com/cloud-messaging/android/android-

migrate-fcm.

Accessed on 29th of April, 2022.

[Gcmb] Migrate a GCM Client App for Android to Firebase Cloud Messaging.

https://developers.google.com/cloud-messaging/android/android-

migrate-fcm.

[Gdp] EU General Data Protection Regulation (GDPR).

https://eugdpr.org/.

Accessed on 29th of April, 2022.

154

https://estimote.com/
https://www.exus.co.uk
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://issuetracker.google.com/issues/78380811#comment22
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://eugdpr.org/

BIBLIOGRAPHY

[Gmoa] Android.Gmobi.1.

https://vms.drweb.com/virus/?_is=1&i=7999623&lng=en.

Accessed on 29th of April, 2022.

[Gmob] GMobi — General Mobile Corporation.

http://www.generalmobi.com/en/.

Accessed on 29th of April, 2022.

[Gooa] Best practices for unique identifiers.

https://developer.android.com/training/articles/user-data-ids.

Accessed on 29th of April, 2022.

[Goob] Google Buys Android for Its Mobile Arsenal.

https://web.archive.org/web/20110205190729/http:

//www.businessweek.com/technology/content/aug2005/tc20050817_

0949_tc024.htm.

Accessed on 29th of April, 2022.

[Gooc] Privacy Security Best Practices | Android Open Source Project.

https://source.android.com/security/best-

practices/privacy#logging-data.

Accessed on 29th of April, 2022.

[Gpla] Android Developers - Define a Custom App Permission.

https://developer.android.com/guide/topics/permissions/defining.

Accessed on 29th of April, 2022.

[Gplb] Android Developers - Permissions Overview.

https://developer.android.com/guide/topics/permissions/overview.

Accessed on 29th of April, 2022.

[Gplc] Google Play App Store.

https://play.google.com/store/apps/.

Accessed on 29th of April, 2022.

[Gra] PermissionManagerService.java.

https://android.googlesource.com/platform/frameworks/base/+/

refs/heads/master/services/core/java/com/android/server/pm/

permission/PermissionManagerService.java#1037.

Accessed on 29th of April, 2022.

[Hiya] Hiya.

155

https://vms.drweb.com/virus/?_is=1&i=7999623&lng=en
http://www.generalmobi.com/en/
https://developer.android.com/training/articles/user-data-ids
https://web.archive.org/web/20110205190729/http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
https://web.archive.org/web/20110205190729/http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
https://web.archive.org/web/20110205190729/http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
https://source.android.com/security/best-practices/privacy#logging-data
https://source.android.com/security/best-practices/privacy#logging-data
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/overview
https://play.google.com/store/apps/
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/permission/PermissionManagerService.java#1037
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/permission/PermissionManagerService.java#1037
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/permission/PermissionManagerService.java#1037

BIBLIOGRAPHY

https://hiya.com/.

Accessed on 29th of April, 2022.

[Hiyb] Hiya Partners.

https://hiya.com/hiya-data-policy.

Accessed on 29th of April, 2022.

[Htc] T-Mobile G1: Full Details of the HTC Dream Android Phone.

https://gizmodo.com/t-mobile-g1-full-details-of-the-htc-dream-

android-phon-5053264.

Accessed on 29th of April, 2022.

[Huaa] CVE-2017-2709.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2709.

Accessed on 29th of April, 2022.

[Huab] Europe should be wary of Huawei, EU tech official says.

https://www.reuters.com/article/us-eu-china-huawei-idUSKBN1O611X.

Accessed on 29th of April, 2022.

[Huac] Huawei App Store.

https://appgallery1.huawei.com/#/Featured.

Accessed on 29th of April, 2022.

[Huad] Huawei’s Android App Store Launches Internationally.

https://www.androidheadlines.com/2018/04/huaweis-android-app-

store-launches-internationally.html.

Accessed on 29th of April, 2022.

[Inf] Infinum Inc.

https://infinum.co.

Accessed on 29th of April, 2022.

[Insa] Commit c247fa1: Change protection level from ephemeral to instant.

https://android.googlesource.com/platform/frameworks/base/+/

c247fa136639dd07278b1954e5fba78ade60614c.

Accessed on 29th of April, 2022.

[Insb] Google Play Instant.

https://developer.android.com/topic/google-play-instant/.

Accessed on 29th of April, 2022.

156

https://hiya.com/
https://hiya.com/hiya-data-policy
https://gizmodo.com/t-mobile-g1-full-details-of-the-htc-dream-android-phon-5053264
https://gizmodo.com/t-mobile-g1-full-details-of-the-htc-dream-android-phon-5053264
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2709
https://www.reuters.com/article/us-eu-china-huawei-idUSKBN1O611X
https://appgallery1.huawei.com/#/Featured
https://www.androidheadlines.com/2018/04/huaweis-android-app-store-launches-internationally.html
https://www.androidheadlines.com/2018/04/huaweis-android-app-store-launches-internationally.html
https://infinum.co
https://android.googlesource.com/platform/frameworks/base/+/c247fa136639dd07278b1954e5fba78ade60614c
https://android.googlesource.com/platform/frameworks/base/+/c247fa136639dd07278b1954e5fba78ade60614c
https://developer.android.com/topic/google-play-instant/

BIBLIOGRAPHY

[Int] Intent - Android Developers.

https://developer.android.com/reference/android/content/Intent.

[Iroa] IronSource — App monetization done right.

https://www.ironsrc.com/.

Accessed on 29th of April, 2022.

[Irob] IronSource - AURA.

https://company.ironsrc.com/enterprise-solutions/.

Accessed on 29th of April, 2022.

[Iroc] IronSource - Aura for Advertisers.

https://www.slideshare.net/ironSource/aura-for-advertisers.

Accessed on 29th of April, 2022.

[Jav] Trail: The Reflection API.

https://docs.oracle.com/javase/tutorial/reflect/index.html.

Accessed on 29th of April, 2022.

[Jaya] Jay Freeman (saurik). Android bug superior to master key.

http://www.saurik.com/id/18.

Accessed on 29th of April, 2022.

[Jayb] Jay Freeman (saurik). Exploit and fix android master key.

http://www.saurik.com/id/17.

Accessed on 29th of April, 2022.

[Jayc] Jay Freeman (saurik). Yet another android master key bug.

http://www.saurik.com/id/19.

Accessed on 29th of April, 2022.

[Joh] Johnson, Ryan and Stavrou, Angelos and Benameur, Azzedine.

All Your SMS & Contacts Belong to ADUPS & Others.

https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-

Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf.

Accessed on 29th of April, 2022.

[Knoa] New permissions names.

https://docs.samsungknox.com/dev/knox-sdk/new-permission-

names.htm.

[Knob] Permissions.

https://docs.samsungknox.com/dev/common/license-permissions.htm.

157

https://developer.android.com/reference/android/content/Intent
https://www.ironsrc.com/
https://company.ironsrc.com/enterprise-solutions/
https://www.slideshare.net/ironSource/aura-for-advertisers
https://docs.oracle.com/javase/tutorial/reflect/index.html
http://www.saurik.com/id/18
http://www.saurik.com/id/17
http://www.saurik.com/id/19
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://docs.samsungknox.com/dev/knox-sdk/new-permission-names.htm
https://docs.samsungknox.com/dev/knox-sdk/new-permission-names.htm
https://docs.samsungknox.com/dev/common/license-permissions.htm

BIBLIOGRAPHY

[Krya] Kryptowire Discovers Mobile Phone Firmware that Transmitted Personally

Identifiable Information (PII) without User Consent or Disclosure.

https://www.kryptowire.com/adups_security_analysis.html.

Accessed on 29th of April, 2022.

[Kryb] Kryptowire Provides Technical Details on Black Hat 2017 Presentation: Observed

ADUPS Data Collection & Data Transmission.

https://www.kryptowire.com/observed_adups_data_collection_

behavior.html.

Accessed on 29th of April, 2022.

[Len] Lenovo Mobility.

https://solutions.lenovo.com/pc-solutions/mobility/.

Accessed on 29th of April, 2022.

[Lgb] LG Enterprise Mobile Solutions.

https://www.lg.com/us/business/enterprise-mobility/business-

resources/solution/mobile-device-management.

Accessed on 29th of April, 2022.

[Loc] locationlabs by Avast.

https://www.locationlabs.com/.

Accessed on 29th of April, 2022.

[Lok] Android Adware and Ransomware Found Preinstalled on High-End Smartphones.

https://www.bleepingcomputer.com/news/security/android-adware-

and-ransomware-found-preinstalled-on-high-end-smartphones/.

Accessed on 29th of April, 2022.

[Lum] Lumen Privacy Monitor.

https://play.google.com/store/apps/details?id=edu.berkeley.icsi.

haystack.

Accessed on 29th of April, 2022.

[Mer] Merge multiple manifest files.

https://developer.android.com/studio/build/manifest-merge.

Accessed on 29th of April, 2022.

[Mir] Mirrorlink - Connected Car Consortium.

https://mirrorlink.com.

Accessed on 29th of April, 2022.

158

https://www.kryptowire.com/adups_security_analysis.html
https://www.kryptowire.com/observed_adups_data_collection_behavior.html
https://www.kryptowire.com/observed_adups_data_collection_behavior.html
https://solutions.lenovo.com/pc-solutions/mobility/
https://www.lg.com/us/business/enterprise-mobility/business-resources/solution/mobile-device-management
https://www.lg.com/us/business/enterprise-mobility/business-resources/solution/mobile-device-management
https://www.locationlabs.com/
https://www.bleepingcomputer.com/news/security/android-adware-and-ransomware-found-preinstalled-on-high-end-smartphones/
https://www.bleepingcomputer.com/news/security/android-adware-and-ransomware-found-preinstalled-on-high-end-smartphones/
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
https://developer.android.com/studio/build/manifest-merge
https://mirrorlink.com

BIBLIOGRAPHY

[Mis] Xiaomi Mi App Store.

http://app.mi.com/.

Accessed on 29th of April, 2022.

[Mob] Digital Turbine – Mobile Posse.

https://mobileposse.com/.

Accessed on 29th of April, 2022.

[Mst] Securing the System: A Deep Dive into Reversing Android Pre-Installed Apps |

Black Hat 2019.

https://www.blackhat.com/us-

19/briefings/schedule/index.html#securing-the-system-a-deep-

dive-into-reversing-android-pre-installed-apps-16040.

Accessed on 29th of April, 2022.

[New] App Traps: How Cheap Smartphones Siphon User Data in DevelopingmCountries.

https://www.wsj.com/articles/app-traps-how-cheap-smartphones-

help-themselves-to-user-data-1530788404.

Accessed on 29th of April, 2022.

[New] New York Times.

Facebook Gave Device Makers Deep Access to Data on Users and Friends.

https:

//www.nytimes.com/interactive/2018/06/03/technology/facebook-

device-partners-users-friends-data.html.

Accessed on 29th of April, 2022.

[Nyt] Facebook’s Data Deals Are Under Criminal Investigation.

https://www.nytimes.com/2019/03/13/technology/facebook-data-

deals-investigation.html.

Accessed on 29th of April, 2022.

[Oem] Commit 087dce2: Add new OEM permission flavor.

https://android.googlesource.com/platform/frameworks/base/+/

087dce20e3a7137e94607c060fd825d1f8952572.

Accessed on 29th of April, 2022.

[Off] Android Developers | Standard partitions.

https://source.android.com/devices/bootloader/partitions.

Accessed on 29th of April, 2022.

159

http://app.mi.com/
https://mobileposse.com/
https://www.blackhat.com/us-19/briefings/schedule/index.html#securing-the-system-a-deep-dive-into-reversing-android-pre-installed-apps-16040
https://www.blackhat.com/us-19/briefings/schedule/index.html#securing-the-system-a-deep-dive-into-reversing-android-pre-installed-apps-16040
https://www.blackhat.com/us-19/briefings/schedule/index.html#securing-the-system-a-deep-dive-into-reversing-android-pre-installed-apps-16040
https://www.wsj.com/articles/app-traps-how-cheap-smartphones-help-themselves-to-user-data-1530788404
https://www.wsj.com/articles/app-traps-how-cheap-smartphones-help-themselves-to-user-data-1530788404
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/2019/03/13/technology/facebook-data-deals-investigation.html
https://www.nytimes.com/2019/03/13/technology/facebook-data-deals-investigation.html
https://android.googlesource.com/platform/frameworks/base/+/087dce20e3a7137e94607c060fd825d1f8952572
https://android.googlesource.com/platform/frameworks/base/+/087dce20e3a7137e94607c060fd825d1f8952572
https://source.android.com/devices/bootloader/partitions

BIBLIOGRAPHY

[Oma] Open Mobile API Specification v3.3.

https://globalplatform.org/specs-library/open-mobile-api-

specification-v3-3/.

Accessed on 29th of April, 2022.

[Onea] OnePlus Device Root Exploit: Backdoor in EngineerMode App for Diagnostics

Mode.

https://www.nowsecure.com/blog/2017/11/14/oneplus-device-root-

exploit-backdoor-engineermode-app-diagnostics-mode/.

Accessed on 29th of April, 2022.

[Oneb] OnePlus left a backdoor in its devices capable of root access.

http://www.androidpolice.com/2017/11/15/oneplus-left-backdoor-

devices-capable-root-access/.

Accessed on 29th of April, 2022.

[Onec] OnePlus OxygenOS built-in analytics.

https://www.chrisdcmoore.co.uk/post/oneplus-analytics/.

Accessed on 29th of April, 2022.

[Oned] OnePlus Secret Backdoor.

https://www.theregister.co.uk/2017/11/14/oneplus_backdoor/.

Accessed on 29th of April, 2022.

[Pera] Manifest.permission_group.

https://developer.android.com/reference/android/Manifest.

permission_group.html.

Accessed on 29th of April, 2022.

[Perb] Permission groups.

https://developer.android.com/guide/topics/manifest/permission-

group-element.

Accessed on 29th of April, 2022.

[Perc] Permission trees.

https://developer.android.com/guide/topics/manifest/permission-

tree-element.

Accessed on 29th of April, 2022.

[Perd] PermissionTainter.

https://github.com/Android-Observatory/PermissionTainter.

160

https://globalplatform.org/specs-library/open-mobile-api-specification-v3-3/
https://globalplatform.org/specs-library/open-mobile-api-specification-v3-3/
https://www.nowsecure.com/blog/2017/11/14/oneplus-device-root-exploit- backdoor-engineermode-app-diagnostics-mode/
https://www.nowsecure.com/blog/2017/11/14/oneplus-device-root-exploit- backdoor-engineermode-app-diagnostics-mode/
http://www.androidpolice.com/2017/11/15/oneplus-left-backdoor-devices-capable-root-access/
http://www.androidpolice.com/2017/11/15/oneplus-left-backdoor-devices-capable-root-access/
https://www.chrisdcmoore.co.uk/post/oneplus-analytics/
https://www.theregister.co.uk/2017/11/14/oneplus_backdoor/
https://developer.android.com/reference/android/Manifest.permission_group.html
https://developer.android.com/reference/android/Manifest.permission_group.html
https://developer.android.com/guide/topics/manifest/permission-group-element
https://developer.android.com/guide/topics/manifest/permission-group-element
https://developer.android.com/guide/topics/manifest/permission-tree-element
https://developer.android.com/guide/topics/manifest/permission-tree-element
https://github.com/Android-Observatory/PermissionTainter

BIBLIOGRAPHY

[Pere] PermissionTracer.

https://github.com/Android-Observatory/PermissionTracer.

[Perf] Privileged Permission Allowlisting.

https://source.android.com/devices/tech/config/perms-allowlist.

Accessed on 29th of April, 2022.

[Plaa] Android Developers - GoogleSignInApi.

https://developers.google.com/android/reference/com/google/

android/gms/auth/api/signin/GoogleSignInApi.

Accessed on 29th of April, 2022.

[Plab] Android Developers - Play Install Referrer Library.

https:

//developer.android.com/google/play/installreferrer/library.

Accessed on 29th of April, 2022.

[Plac] https://developers.google.com/android/play-protect.

https://developers.google.com/android/play-protect.

Accessed on 29th of April, 2022.

[Prea] Commit a90c8de: Add new ”preinstalled” permission flag.

https://android.googlesource.com/platform/frameworks/base/+/

a90c8def2c6762bc6e5396b78c43e65e4b05079d.

Accessed on 29th of April, 2022.

[Preb] Commit de15eda: Add new permissions flag, saying the permission can be

automatically granted to pre-api-23 apps.

https://android.googlesource.com/platform/frameworks/base/+/

de15edaa9bf486a4050bb067317d313fd807bb10.

Accessed on 29th of April, 2022.

[Pria] Privacy Grade.

http://privacygrade.org/.

Accessed on 29th of April, 2022.

[Prib] PrivacyStar.

https://privacystar.com.

Accessed on 29th of April, 2022.

[Pric] PrivacyStar Privacy Policy.

https://privacystar.com/privacy-policy/.

161

https://github.com/Android-Observatory/PermissionTracer
https://source.android.com/devices/tech/config/perms-allowlist
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInApi
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInApi
https://developer.android.com/google/play/installreferrer/library
https://developer.android.com/google/play/installreferrer/library
https://developers.google.com/android/play-protect
https://android.googlesource.com/platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d
https://android.googlesource.com/platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d
https://android.googlesource.com/platform/frameworks/base/+/de15edaa9bf486a4050bb067317d313fd807bb10
https://android.googlesource.com/platform/frameworks/base/+/de15edaa9bf486a4050bb067317d313fd807bb10
http://privacygrade.org/
https://privacystar.com
https://privacystar.com/privacy-policy/

BIBLIOGRAPHY

Accessed on 29th of April, 2022.

[Pro] Prolific - Quickly find research participants you can trust.

https://www.prolific.co/.

Accessed on 29th of April, 2022.

[Pusa] Amazon Push Notification Service.

https://developer.amazon.com/docs/adm/integrate-your-app.html.

Accessed on 29th of April, 2022.

[Pusb] Baidu Push Notification Service.

http://push.baidu.com/doc/android/api.

Accessed on 29th of April, 2022.

[Pusc] Google Maps Receive Permission.

https://stackoverflow.com/questions/14832911/android-map-v2-why-

maps-receive-permission.

Accessed on 29th of April, 2022.

[Pusd] Google Push Notification Service.

https://web.archive.org/web/20121004073640/https:

//developers.google.com/android/c2dm/.

Accessed on 29th of April, 2022.

[Puse] Huawei Push Notification Service.

https://stackoverflow.com/questions/57860791/how-to-access-

payload-of-hms-push-notifications.

Accessed on 29th of April, 2022.

[Pusf] Jiguang Push Notification Service.

https://docs.jiguang.cn/en/jpush/client/Android/android_guide/

#configuration-and-code-instructions.

Accessed on 29th of April, 2022.

[Pusg] Xiaomi Push Notification Service.

https://docs.moengage.com/docs/android-xiaomi-push.

Accessed on 29th of April, 2022.

[Qih] Qihoo 360 App Store.

http://zhushou.360.cn/.

Accessed on 29th of April, 2022.

162

https://www.prolific.co/
https://developer.amazon.com/docs/adm/integrate-your-app.html
http://push.baidu.com/doc/android/api
https://stackoverflow.com/questions/14832911/android-map-v2-why-maps-receive-permission
https://stackoverflow.com/questions/14832911/android-map-v2-why-maps-receive-permission
https://web.archive.org/web/20121004073640/https://developers.google.com/android/c2dm/
https://web.archive.org/web/20121004073640/https://developers.google.com/android/c2dm/
https://stackoverflow.com/questions/57860791/how-to-access-payload-of-hms-push-notifications
https://stackoverflow.com/questions/57860791/how-to-access-payload-of-hms-push-notifications
https://docs.jiguang.cn/en/jpush/client/Android/android_guide/#configuration-and-code-instructions
https://docs.jiguang.cn/en/jpush/client/Android/android_guide/#configuration-and-code-instructions
https://docs.moengage.com/docs/android-xiaomi-push
http://zhushou.360.cn/

BIBLIOGRAPHY

[Rea] Joel Reardon. Why Google Should Stop Logging Contact-Tracing Data.

https://blog.appcensus.io/2021/04/27/why-google-should-stop-

logging-contact-tracing-data/.

Accessed on 29th of April, 2022.

[Rec] Recents screen | Android developers.

https:

//developer.android.com/guide/components/activities/recents.

Accessed on 29th of April, 2022.

[Reda] China Mobile Network Partner Redstone Moves into Robotics.

https://www.prweb.com/releases/2017/04/prweb14212503.htm.

Accessed on 29th of April, 2022.

[Redb] Redstone.

http://www.redstone.net.cn/.

Accessed on 29th of April, 2022.

[Ref] java.lang.reflect - Android Documentation.

https:

//developer.android.com/reference/java/lang/reflect/package-

summary.

Accessed on 29th of April, 2022.

[Req] RequiresPermission — AndroidX.

https://developer.android.com/reference/androidx/annotation/

RequiresPermission.

Accessed on 29th of April, 2022.

[Rooa] Rootnik Android Trojan Abuses Commercial Rooting Tool and Steals Private

Information.

https://unit42.paloaltonetworks.com/rootnik-android-trojan-

abuses-commercial-rooting-tool-and-steals-private-information/.

Accessed on 29th of April, 2022.

[Roob] Simple to use root checking Android library.

https://github.com/scottyab/rootbeer.

Accessed on 29th of April, 2022.

[Rsa] Challenges in Android Supply Chain Analysis.

163

https://blog.appcensus.io/2021/04/27/why-google-should-stop-logging-contact-tracing-data/
https://blog.appcensus.io/2021/04/27/why-google-should-stop-logging-contact-tracing-data/
https://developer.android.com/guide/components/activities/recents
https://developer.android.com/guide/components/activities/recents
https://www.prweb.com/releases/2017/04/prweb14212503.htm
http://www.redstone.net.cn/
https://developer.android.com/reference/java/lang/reflect/package-summary
https://developer.android.com/reference/java/lang/reflect/package-summary
https://developer.android.com/reference/java/lang/reflect/package-summary
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://unit42.paloaltonetworks.com/rootnik-android-trojan-abuses-commercial-rooting-tool-and-steals-private-information/
https://unit42.paloaltonetworks.com/rootnik-android-trojan-abuses-commercial-rooting-tool-and-steals-private-information/
https://github.com/scottyab/rootbeer

BIBLIOGRAPHY

https://published-prd.lanyonevents.com/published/rsaus20/

sessionsFiles/17497/2020_USA20_MBS-

R09_01_Challenges%20in%20Android%20Supply%20Chain%20Analysis.pdf.

Accessed on 29th of April, 2022.

[Runa] Commit a5d70a: Allow permissions to be runtime-only.

https://android.googlesource.com/platform/frameworks/base/+/

a5d70a17ebd1b3ffe026879c5d9d96f04d10d4f2.

Accessed on 29th of April, 2022.

[Runb] Runtime Permissions.

https:

//developer.android.com/about/versions/marshmallow/android-6.0-

changes#behavior-runtime-permissions.

Accessed on 29th of April, 2022.

[Sama] CVE-2017-2709.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0864.

Accessed on 29th of April, 2022.

[Samb] Samsung Knox : secure mobile platform and solution.

https://www.samsungknox.com/en.

Accessed on 29th of April, 2022.

[Samc] Samsung Mobile Device Management Solutions.

https://developer.samsung.com/tech-insights/knox/mobile-device-

management.

Accessed on 29th of April, 2022.

[Sca] Firmware Scanner.

https://play.google.com/store/apps/details?id=org.imdea.

networks.iag.preinstalleduploader.

Accessed on 29th of April, 2022.

[Set] Commit b233466: Add new protection level for setup wizard.

https://android.googlesource.com/platform/frameworks/base/+/

b23346639b66783c1662fd8ffa5345ef5cef336c.

Accessed on 29th of April, 2022.

[Sha] android:sharedUserId.

164

https://published-prd.lanyonevents.com/published/rsaus20/sessionsFiles/17497/2020_USA20_MBS-R09_01_Challenges%20in%20Android%20Supply%20Chain%20Analysis.pdf
https://published-prd.lanyonevents.com/published/rsaus20/sessionsFiles/17497/2020_USA20_MBS-R09_01_Challenges%20in%20Android%20Supply%20Chain%20Analysis.pdf
https://published-prd.lanyonevents.com/published/rsaus20/sessionsFiles/17497/2020_USA20_MBS-R09_01_Challenges%20in%20Android%20Supply%20Chain%20Analysis.pdf
https://android.googlesource.com/platform/frameworks/base/+/a5d70a17ebd1b3ffe026879c5d9d96f04d10d4f2
https://android.googlesource.com/platform/frameworks/base/+/a5d70a17ebd1b3ffe026879c5d9d96f04d10d4f2
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-runtime-permissions
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-runtime-permissions
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-runtime-permissions
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0864
https://www.samsungknox.com/en
https://developer.samsung.com/tech-insights/knox/mobile-device-management
https://developer.samsung.com/tech-insights/knox/mobile-device-management
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader
https://android.googlesource.com/platform/frameworks/base/+/b23346639b66783c1662fd8ffa5345ef5cef336c
https://android.googlesource.com/platform/frameworks/base/+/b23346639b66783c1662fd8ffa5345ef5cef336c

BIBLIOGRAPHY

https://developer.android.com/guide/topics/manifest/manifest-

element#uid.

Accessed on 29th of April, 2022.

[Sig] Application signing.

https://developer.android.com/studio/publish/app-signing.

Accessed on 29th of April, 2022.

[Sma] Smaato Blog.

https://blog.smaato.com/everything-you-need-to-know-about-

location-based-mobile-advertising.

Accessed on 29th of April, 2022.

[Smi] Smith Micro Software.

https://www.smithmicro.com.

Accessed on 29th of April, 2022.

[Sof] SOFTBANK announces the completion of Vodafone K.K.’s acquisition.

https://group.softbank/en/news/press/20060427.

Accessed on 29th of April, 2022.

[Sto] Securing the System — A Deep Dive into Reversing Android Pre-Installed Apps.

https://github.com/maddiestone/ConPresentations/blob/master/

Blackhat2019.SecuringTheSystem.pdf.

Accessed on 29th of April, 2022.

[Syn] Synchronoss Technologies - Privacy Policy.

https://synchronoss.com/privacy-policy/#datacollected.

Accessed on 29th of April, 2022.

[Sys] Manifest permissions.

https:

//developer.android.com/reference/android/Manifest.permission.

Accessed on 29th of April, 2022.

[Tena] Tencent Android Appstore.

https://android.app.qq.com.

Accessed on 29th of April, 2022.

[Tenb] Tencent App Store.

https://android.myapp.com/.

Accessed on 29th of April, 2022.

165

https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/studio/publish/app-signing
https://blog.smaato.com/everything-you-need-to-know-about-location-based-mobile-advertising
https://blog.smaato.com/everything-you-need-to-know-about-location-based-mobile-advertising
https://www.smithmicro.com
https://group.softbank/en/news/press/20060427
https://github.com/maddiestone/ConPresentations/blob/master/Blackhat2019.SecuringTheSystem.pdf
https://github.com/maddiestone/ConPresentations/blob/master/Blackhat2019.SecuringTheSystem.pdf
https://synchronoss.com/privacy-policy/#datacollected
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://android.app.qq.com
https://android.myapp.com/

BIBLIOGRAPHY

[Texa] Commit 700feef: Shortcut permissions for default text classifier.

https://android.googlesource.com/platform/frameworks/base/+/

700feef8a60e06784d28d1db9502e650df854cad.

Accessed on 29th of April, 2022.

[Texb] Implementing Text Classification.

https://source.android.com/devices/tech/display/textclassifier.

Accessed on 29th of April, 2022.

[Tri] Triada Trojan Found in Firmware of Low-Cost Android Smartphones.

https://www.bleepingcomputer.com/news/security/android-adware-

and-ransomware-found-preinstalled-on-high-end-smartphones/.

Accessed on 29th of April, 2022.

[Trua] ”Betrayed by an app she had never heard of” - How TrueCaller is endangering

journalists.

https://privacyinternational.org/node/2997.

Accessed on 29th of April, 2022.

[Trub] How does Truecaller get its data?

https://support.truecaller.com/hc/en-us/articles/212638485-How-

does-Truecaller-get-its-data.

Accessed on 29th of April, 2022.

[Truc] Phone Number Search — TrueCaller.

https://www.truecaller.com/.

Accessed on 29th of April, 2022.

[Trud] Your Data Is Our Data: A Truecaller Breakdown.

https://techcabal.com/2018/05/02/your-data-is-our-data-a-

truecaller-breakdown/.

Accessed on 29th of April, 2022.

[Ups] Upstream - Low-end Android smartphones sold with pre-installed malicious

software in emerging markets.

https://www.upstreamsystems.com/pre-installed-malware-android-

smartphones/.

Accessed on 29th of April, 2022.

[Ven] Commit 002fdbd: Support privileged vendor apps.

166

https://android.googlesource.com/platform/frameworks/base/+/700feef8a60e06784d28d1db9502e650df854cad
https://android.googlesource.com/platform/frameworks/base/+/700feef8a60e06784d28d1db9502e650df854cad
https://source.android.com/devices/tech/display/textclassifier
https://www.bleepingcomputer.com/news/security/android-adware-and-ransomware-found-preinstalled-on-high-end-smartphones/
https://www.bleepingcomputer.com/news/security/android-adware-and-ransomware-found-preinstalled-on-high-end-smartphones/
https://privacyinternational.org/node/2997
https://support.truecaller.com/hc/en-us/articles/212638485-How-does-Truecaller-get-its-data
https://support.truecaller.com/hc/en-us/articles/212638485-How-does-Truecaller-get-its-data
https://www.truecaller.com/
https://techcabal.com/2018/05/02/your-data-is-our-data-a-truecaller-breakdown/
https://techcabal.com/2018/05/02/your-data-is-our-data-a-truecaller-breakdown/
https://www.upstreamsystems.com/pre-installed-malware-android-smartphones/
https://www.upstreamsystems.com/pre-installed-malware-android-smartphones/

BIBLIOGRAPHY

https://android.googlesource.com/platform/frameworks/base/+/

002fdbdb950ebbf40331a27de33b80db33e40d30.

Accessed on 29th of April, 2022.

[Ver] Commit 3e7d977: Grant installer and verifier install permissions robustly.

https://android.googlesource.com/platform/frameworks/base/+/

3e7d977ff7c743713f0ad6336a039d7760ba47d1.

Accessed on 29th of April, 2022.

[Vir] VirusTotal.

https://www.virustotal.com/.

Accessed on 29th of April, 2022.

[Vpn] VpnService — Android Developpers.

https:

//developer.android.com/reference/android/net/VpnService.html.

Accessed on 29th of April, 2022.

[Weba] WebUSB API.

https://wicg.github.io/webusb/.

Accessed on 29th of April, 2022.

[Webb] @yume-chan/adb - npm.

https://www.npmjs.com/package/@yume-chan/adb.

Accessed on 29th of April, 2022.

[Webc] @yume-chan/adb-backend-webusb - npm.

https://www.npmjs.com/package/@yume-chan/adb-backend-webusb.

Accessed on 29th of April, 2022.

[Webd] @yume-chan/adb-credential-web - npm.

https://www.npmjs.com/package/@yume-chan/adb-credential-web.

Accessed on 29th of April, 2022.

[Xda] XDA-Developers Forum (Galaxy Note 4). com.facebook.appmanager.

https://forum.xda-developers.com/note-4/themes-apps/com-

facebook-appmanager-t2919151.

Accessed on 29th of April, 2022.

167

https://android.googlesource.com/platform/frameworks/base/+/002fdbdb950ebbf40331a27de33b80db33e40d30
https://android.googlesource.com/platform/frameworks/base/+/002fdbdb950ebbf40331a27de33b80db33e40d30
https://android.googlesource.com/platform/frameworks/base/+/3e7d977ff7c743713f0ad6336a039d7760ba47d1
https://android.googlesource.com/platform/frameworks/base/+/3e7d977ff7c743713f0ad6336a039d7760ba47d1
https://www.virustotal.com/
https://developer.android.com/reference/android/net/VpnService.html
https://developer.android.com/reference/android/net/VpnService.html
https://wicg.github.io/webusb/
https://www.npmjs.com/package/@yume-chan/adb
https://www.npmjs.com/package/@yume-chan/adb-backend-webusb
https://www.npmjs.com/package/@yume-chan/adb-credential-web
https://forum.xda-developers.com/note-4/themes-apps/com-facebook-appmanager-t2919151
https://forum.xda-developers.com/note-4/themes-apps/com-facebook-appmanager-t2919151

Acronyms

ADB Android Debug Bridge.

AOSP Android Open Source Project.

APEX Android Pony EXpress.

API application programming interface.

APK Android Package.

ART Android RunTime.

ATS Advertising and Tracking Service.

AV Anti-Virus.

CDD Android Compatibility Definition Document.

CFG Control Flow Graph.

CTS Compatibility Test Suite.

DEX Dalvik Executable File.

DPA Data Protection Agency.

DPO Data Protection Officer.

DVM Dalvik Virtual Machine.

FOTA Fimware Over The Air.

FQDN fully qualified domain name.

GAEN Google-Apple Exposure Notifications.

GCM Google Cloud Messaging.

GSMA GSM Association.

HAL Hardware Abstraction Layer.

IAC Inter-App Communication.

ICC Inter-Component Communication.

IMEI International Mobile Equipment Identity.

IPC Inter-Process Communication.

169

Acronyms

IRB Intitutional Review Board.

JNI Java Native Interface.

MDM Mobile Device Management.

MNO Mobile Network Operator.

NDK Native Development Kit.

ODEX Optimized Dalvik Executable File.

ODM Original Device Manufacturer.

OEM Original Equipment Manufacturer.

OHA Open Handset Alliance.

OOBE Out-of-the-box Experience.

OS operating system.

PII Personally Identifiable Information.

PPI Pay-per-Install.

PUP Potentially Unwanted Programs.

RPI rolling proximity identifiers.

SDK Software Development Kit.

SLD second-level domain.

TPL Third-Party Library.

UID unique identifier.

VTS Vendor Test Suite.

170

	Acknowledgements
	Published and Submitted Content
	Other Research Merits
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions and Objectives
	Contributions and Organization
	Outline of this Thesis

	I The Android Operating System
	Android
	Android Architecture
	The Layers of Android
	Android Compatibility Program
	System Updates and FOTA Apps

	The Android Permission System
	Requesting a Permission
	Permission Enforcement
	Protection Levels
	Permission Groups
	Permission Trees
	Custom Permissions

	Related Work
	Studying and Characterizing the Android Supply Chain
	Android Images Customization
	Privacy and Security of Pre-installed Apps

	The Android Permission System
	Characterization of the Permission System
	Security and Privacy
	Custom Permissions

	Android App Analysis Techniques
	Static Analysis
	Dynamic Analysis
	Limitations for the Analysis of System Apps

	II On the Impact of Customization on Users' Privacy and Security
	Collecting Pre-installed Apps at Scale
	Firmware Scanner
	Workflow

	Data Collected
	Ethical Aspects

	Pre-installed Apps in Android Devices
	Data Sources
	Lumen Privacy Monitor

	Supply Chain Analysis
	Developer Ecosystem
	Third-party Services
	Public and Non-public Apps

	Permission Analysis
	Defined Custom Permissions
	Requested Permissions
	Permission Usage by Third-Party Libraries
	Component Exposing

	Behavioral Analysis
	Static Analysis
	Traffic Analysis
	Manual Analysis: Relevant Cases

	A Case Study: Apps Accessing System Logs
	Logged PII in the Wild
	System Logs Exfiltration

	Study Limitations
	Takeaways

	Evolution of the Permission System
	Temporal Analysis of AOSP Permissions
	Permission Definition Flags
	Protection Level Flags
	Permission Flags

	Evolution of the Permission Granting Algorithm
	Protection Level Flags Usage in the Wild
	Custom Permissions Usage by Privileged Apps

	Takeaways

	Analyzing Custom Permissions Behaviour
	Data Collection
	Data Sources
	Methodology for Extracting Custom Permissions
	Ethical Considerations

	Prevalence of Custom Permissions
	Definition of Custom Permissions
	Requests of Custom Permissions

	Naming and Definition Conventions
	Naming Convention Violations
	(Lack of) Documentation for Custom Permissions

	Detecting Leaky Custom Permissions
	Tooling
	Results

	Takeaways

	III Conclusions and Open Issues
	Discussion
	Attribution and Accountability
	Privilege Escalation
	Transparency and User Control
	Consumer Protection Regulations
	Recommendations
	Attribution and Accountability
	Accessible Documentation and Consent Forms

	Conclusion
	Contributions
	The Android Pre-installed Apps Ecosystem
	Evolution of the Android Permission System
	Android Custom Permissions

	Open Issues and Future Work
	Android Framework Customization
	Native Libraries
	Dynamic Analysis

	Bibliography
	Acronyms

