
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024 1801

Mules and Permission Laundering in Android:
Dissecting Custom Permissions in the Wild

Julien Gamba , Álvaro Feal , Eduardo Blazquez , Vinuri Bandara , Abbas Razaghpanah , Juan Tapiador ,
and Narseo Vallina-Rodriguez

Abstract—Android implements a permission system to regulate
apps’ access to system resources and sensitive user data. One salient
feature of this system is its extensibility: apps can define their own
custom permissions to expose features and data to other apps.
However, little is known about how widespread the usage of custom
permissions is, and what is the impact that these permissions can
have on users’ privacy and security. In this paper, we empirically
study the usage of custom permissions at large scale, using a dataset
of 2.2M pre-installed and app-store-downloaded apps. We find
the usage of custom permissions to be widespread, and seemingly
growing over time. Despite this prevalence, we find that custom
permissions are virtually invisible to end users, and their purpose
mostly undocumented. This lack of transparency can lead to serious
security and privacy problems: we show that custom permissions
can facilitate access to permission-protected system resources to
apps that lack those permissions without user awareness. To detect
this practice, we design and implement two static analysis tools,
and highlight multiple concerning cases spotted in the wild. We
conclude this study with a discussion of potential solutions to
mitigate the privacy and security risks of custom permissions.

Index Terms—Access control, Android, custom permissions,
mobile apps.

I. INTRODUCTION

THE Android operating system implements a permission-
based mechanism to control how applications (apps) can

Manuscript received 2 May 2022; revised 13 February 2023; accepted
18 June 2023. Date of publication 30 June 2023; date of current version
11 July 2024. This work was supported in part by Spanish Government
under Grants PID2019-111429RB-C21 and PID2019-111429RBC22, in part
by the Region of Madrid, co-financed by European Structural Funds ESF
and FEDER Funds under Grant CYNAMON-CM (P2018/TCS-4566); in part
by Google and Consumer Reports, and by EU H2020 under Grant TRUST
aWARE (101021377). The work of Narseo Vallina-Rodriguez has been ap-
pointed as 2019 Ramon y Cajal fellow ((RYC2020-030316-I), funded by
the MICINN/AEI/10.13039/501100011033, and by ESF Investing in your fu-
ture. Recommended for acceptance by V. Ganapathy. (Corresponding author:
Juan Tapiador.)

Julien Gamba, Álvaro Feal, and Vinuri Bandara are with IMDEA Networks In-
stiture, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain (e-mail:
julien.gamba@imdea.org; alvaro.feal@imdea.org; vinuri.bandara@imdea.org).

Eduardo Blazquez and Juan Tapiador are with the Universidad Carlos III
de Madrid, 28911 Leganes, Madrid, Spain (e-mail: edblazqu@pa.uc3m.es;
jestevez@inf.uc3m.es).

Abbas Razaghpanah is with ThousandEyes/Cisco, San Francisco, CA 94158
USA, and also with International Computer Science Institute, Berkeley, CA
94704 USA (e-mail: abbas@icsi.berkeley.edu).

Narseo Vallina-Rodriguez is with IMDEA Network Institute, 28918 Leganes,
Madrid, Spain, and also with AppCensus Inc., San Francisco, CA 94105 USA
(e-mail: narseo.vallina@imdea.org).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TDSC.2023.3288981, provided by the authors.

Digital Object Identifier 10.1109/TDSC.2023.3288981

access sensitive data and dangerous system features [49] such
as user contacts, the camera, location sensors, or the system
settings. Coupled with other protection mechanisms such as
process sandboxing, the permission system empowers users to
control what sensitive resources are accessible to which apps.
The Android Open Source Project (AOSP) defines a standard set
of permissions which are supported by most Android devices.
Any Google-certified device [3], [4] must implement the whole
set of AOSP permissions to guarantee their compatibility with
the standard Android platform [5].

A decade of research in the use, enforcement, and usability
of AOSP permissions has revealed severe privacy and security
shortcomings inherent to the Android permission model [61],
[65], [68], [71], [73], [84], [86], [90]. However, the research
literature overlooked a key feature of Android’s permission
model: its extensibility. By design, the Android framework
allows any app developer to share features implemented in
their software with other apps in a “controlled” way by defin-
ing custom permissions [47]. Therefore, custom permissions
allow extending the capabilities offered by the Android OS
and facilitate the flourishment of an open software ecosystem
in which apps (and third-party libraries or SDKs) can share
data and components with other developers. However, custom
permissions pose potential security and privacy risks as they can
be (ab)used—intentionally or by mistake—to circumvent the
standard permission system and provide backdoored access to
privileged data and system features to apps that are otherwise not
permitted to do so, in a way akin to how covert- and side-channels
operate [84].

The control and transparency mechanisms implemented by
the Android operating system are insufficient to protect users
from abusive or insecure implementations of custom permis-
sions. Even identifying the party responsible for their defini-
tion and their purpose can become a daunting task. Google
recommends using the reverse domain name as the prefix of
such permissions, and supplying a description of the custom
functionality or data protected by the permission [6], [47], but, in
practice, there is no enforcement of such recommendations [75].
Consequently, it is not possible to automatically know what
precise function or resource is protected by a custom permission,
and how they are being integrated and used across Android apps.
This lack of control and transparency also manifests at installa-
tion time, which translates into profound implications in terms
of user awareness and control: unlike official AOSP permissions
custom permissions are not listed in the app stores, and end-users

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-4554-8291
https://orcid.org/0000-0002-6658-1800
https://orcid.org/0009-0008-0367-4314
https://orcid.org/0000-0002-6514-9813
https://orcid.org/0000-0002-0320-8611
https://orcid.org/0000-0002-4573-3967
https://orcid.org/0000-0002-5420-6835
mailto:julien.gamba@imdea.org
mailto:alvaro.feal@imdea.org
mailto:vinuri.bandara@imdea.org
mailto:edblazqu@pa.uc3m.es
mailto:jestevez@inf.uc3m.es
mailto:abbas@icsi.berkeley.edu
mailto:narseo.vallina@imdea.org
https://doi.org/10.1109/TDSC.2023.3288981

1802 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

cannot grant or deny apps access to them at runtime unless the
developer willingly defines them with adangerous protection
level.

Despite these risks, the research literature on custom permis-
sions is significantly narrow. Prior work performed a high-level
analysis of the prevalence of custom permissions in pre-installed
apps [75], while others demonstrated, using proof-of-concept
implementations, how custom permissions can enable permis-
sion re-delegation and confused deputy attacks [63], [64], [79],
[87]. Yet, our understanding of the Android custom permissions
landscape has remained low, particularly in terms of their preva-
lence, usage, and potential misuse. In fact, the state-of-the-art
lacks app analysis tools capable of capturing and analyzing the
risks of custom permissions due to their asynchronous nature.

In order to fill this knowledge gap, we study a dataset of
52,468 unique custom permissions defined by publicly-available
and pre-installed apps. This is the largest dataset of custom
permissions collected to date and gives us an unprecedented and
global view of this ecosystem (Section IV). Using this dataset,
we make the following key contributions:
� We present the first longitudinal and large-scale measure-

ment of the usage of custom permissions in the Android
ecosystem (Section V). We find that both pre-installed and
public apps both define and request a large number of cus-
tom permissions. Namely, 58% and 67% of pre-installed
and public apps request at least one, and 26% and 4% define
at least one, respectively.

� We measure whether developers defining custom permis-
sions comply with Google’s naming and transparency
recommendations, finding widespread violations. Specifi-
cally, 45% of declarations do not follow naming recom-
mendations. For example, we find 722 custom permis-
sions with the android.permission prefix, which is
explicitly forbidden by the Android Compatibility Defi-
nition Document (CDD). Moreover, there is no enforced
mechanism by which developers have to report what a
given custom permission enables or is used for. While
there is a description tag to describe the purpose and
functionality of the custom permission, its usage is optional
and we find that it is rarely used by developers, being
missing in 75% of the cases.

� The lack of transparency in custom permissions is aggra-
vated by the lack of analysis tools to trace and understand
the type of data or capability that a given custom permission
protects. To fill this methodological and tooling gap, we
present a novel method to triage apps that are potentially
misusing custom permissions to access personal data, or
perform other actions potentially detrimental to users’
privacy and security (Section VII). Our method relies on
two purpose-specific tools: (1) permissionTracer, a
tool that reports potentially-dangerous custom permissions
and detects potential cases of a privilege escalation attack
in which an attacker can access permission-protected in-
formation using custom permissions; and (2) permis-
sionTainter, a static taint analysis tool that inspects
the DEX code of apps that define custom permissions, to
identify potential privacy leaks due to those permissions.
Equipped with these tools, we identify several instances

of potentially harmful and insecure implementations that
can expose sensitive data such as the location, Wi-Fi MAC
address, or contacts without requesting the corresponding
AOSP permission.

� We conduct a small-scale survey of app developers who
defined some of these custom permissions in order to
understand their use case and rationale (Section VII). Our
findings suggest that most developers lack a clear under-
standing of their purpose and functioning. As a result,
custom permissions are often used due to poor software
development practices or because they are required to
define them in order to integrate third-party SDKs.

These four contributions offer a unique picture of the custom
permission landscape and introduce new methods and tools for
assessing their security and privacy risks. We conclude this
paper with a constructive discussion on potential solutions for
the accountability and transparency issues of Android custom
permissions. To foster further research in this domain and raise
awareness about the risks of custom permissions, we make
our dataset of custom permissions available to the research
community [20], [21].

Responsible Disclosure: During the course of this study, we
identified vulnerabilities in Android apps currently installed on
user devices. To minimize negative consequences for users, we
have responsibly disclosed our results to Google in December
2020, including several examples of apps that expose private
data without user consent via custom permissions. Google rep-
resentatives acknowledged the issue, but considered it to be
a consequence of the openness of the Android platform, and
therefore difficult to solve (and monitor) without hindering the
possibility for developers to create custom permissions.

II. THE ANDROID PERMISSION SYSTEM

This section provides essential background knowledge about
the Android permission system and its extensibility through
custom permissions. We refer the reader to Google’s official
documentation for general details on the Android permission
system [49].

A. Permission Model

Android’s security model leverages some of the security
features offered by the Linux kernel, including user isolation. In
Android, each app runs under a unique user ID (UID), belongs
to a group whose group ID (GID) is the same as the app’s UID,
and is given a dedicated access-protected data directory. User
apps are sandboxed at the process and file system level, thus
preventing them from arbitrarily interacting with each other.
To access sensitive user data (e.g., text messages or contacts),
device features (e.g., camera or GPS), and OS services (e.g.,
system settings), apps must request and be granted specific
permissions.

Each permission in Android is assigned a user group with a
distinct GID. The kernel manages access to resources such as
regular files, devices, and local sockets, based on an apps’ group
membership by way of its UID and associated GIDs. When an
app is granted a permission by the framework (action performed
by Android’s ActivityManager), the UID assigned to the

GAMBA et al.: MULES AND PERMISSION LAUNDERING IN ANDROID: DISSECTING CUSTOM PERMISSIONS 1803

app becomes a member of the group assigned to that permission,
thus effectively granting the app access to the resources it
protects.

It is also important to note that all Android apps are cryp-
tographically signed with a digital certificate [55]. In Android,
there are special mechanisms in place for apps that are signed
with the same certificate to share data more easily, as they are
meant to belong to the same “developer”. Namely, apps signed
with the same certificate can use the sharedUserId attribute
in their manifest to request the system to run with the same
UID. This means that such apps can run in the same process and
share access to the same system resources; i.e., any permission
granted to one of the apps will be granted to all other apps
signed with the same certificate. This feature was deprecated in
API level 29 [11]. We note, however, that the certificate is only
a weak attribution signal, as Android apps rely on self-signed
certificates and, as such, the information they contain cannot be
fully trusted [77].

B. Requesting Permissions

Apps must include the <uses-permission> tag in the
Android Manifest file for requesting permissions [49]. Each An-
droid permission has an associated protection level that relates
to its implied potential risk. This, however, affects the procedure
that the operating system follows to determine whether or not to
grant a given permission to a requesting app:
� Permissions with the normal protection level are con-

sidered not to pose much risk to the user’s privacy or the
device’s security, and are automatically granted at instal-
lation time.

� Permissions with a signature protection level will also
be granted by the system at installation time, but only if
the app requesting the permission is signed with the same
certificate as the app defining it.

� Finally, dangerous permissions protect resources that
are considered sensitive (e.g., the device’s location) and
therefore require explicit user approval. dangerous per-
missions are granted at runtime since Android 6.

Permission can also be part of a permission group, which
gather together permissions that refer to the same part of the
system (e.g., the READ_SMS and WRITE_SMS permissions are
both in the SMS group). Permission requests are handled at the
group level, even if each single permission definition appears in
the manifest.

C. AOSP Permissions

The Android Open Source Project defines a set of standard
permissions that must be supported by Google-certified Android
devices. These aim to define the standard way of accessing
the most common resources across different devices, such as
obtaining the location or sending text messages. The labels
for these permissions begin with the android.permission
prefix. For instance, android.permission.SEND_SMS is
the standard AOSP permission for sending text messages.

The permission system has evolved and increased over time as
illustrated in Fig. 1 as a result of Google adding new features for

Fig. 1. Evolution of the number of AOSP permissions per Android release
observed by parsing the manifest file of the open-source framework app, which
defines those default permissions for the system.

Fig. 2. Example of an app defining a custom permission and protecting a
service with it. Only App3, which requests the permission, can interact with the
service exposed by App1.

device manufacturers or developers, or improving the security
and privacy guarantees of the system. The number of AOSP
permissions has grown from 114 in Android 1.6 (API level 4,
released in 2009) to 689 in Android 12 (API level 31, released in
2021). Not all of these permissions are supposed to be available
to all developers though: some are marked as “Not for use by
third-party applications” in the AOSP source code (e.g., the
READ_LOGS permission which allow an app to get access to
the system log files). In fact, out of the 689 official permissions
defined at API level 31, 305 permissions (44% of the total)
have the @SystemAPI annotation, which indicates that they
are reserved for system processes.

D. Custom Permissions

Android allows developers to define (or expose) their own
custom permissions to enable controlled access to their own
components and features. This facilitates “regulated” program-
matic inter-app communication and data sharing, despite each
app running with a different UID, as illustrated in Fig. 2. Apps
can define their custom permissions in their manifest file by
using the <permission> tag [7]. Apps declaring (or re-
questing) access to custom permissions must also do so in the
manifest file, just like they do for regular AOSP permissions.
However, for apps published on the Google Play market, the
custom permissions requested by a given app is not rendered in
its public market profile, so users are unaware of their presence
at the time of installing them from the markets. Once an app
requests access to a custom permission, it can interact with the
protected component, for instance by sending an intent [57] or
by instantiating the component directly (e.g., for a protected
activity). By default, access to custom permissions is regulated
by the OS package manager, but the app defining them can imple-
ment further access controls to only grant access to authorized
apps, regardless of the protection level of the permission, by

1804 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

calling checkPermission, enforcePermission or one
of their variants [56]. The ways in which other apps can access
an app component depend on whether it is exported (either
through theandroid:exported attribute or if it contains any
Intent-Filter) and on the protection level of the protecting
permission.

E. Naming Conventions for Custom Permissions

The Android operating system does not impose any restriction
on custom permission names or the features and data they can
enable. However, Google recommends using the app’s package
name as the prefix for the custom permissions that it defines
(e.g., an app with the package name com.foo should name
their custom permissions com.foo.MY_PERM), which itself
should use a “reverse-domain-style name”, to ensure package
and permission name uniqueness [47]. Google also recommends
adding a description of the purpose of their permissions to
“explain the permission to the user” [36] when defined in the
Android Manifest file. However, no active policy enforcement
is applied [75]. Moreover, Software Development Kits (SDK)
embedded on Android apps may also define and expose custom
permissions with the collaboration of the developer, in which
case the permissions they request or define will be merged in
the manifest of the host app [33] (e.g., an SDK from sdk.com
could define the com.sdk.MY_PERM permission). The pres-
ence of SDK-defined custom permissions adds another layer of
complexity to the analysis and attribution of custom permissions
to the responsible party.

III. RELATED WORK

Previous work on Android’s permission system has focused
on the usage and abuse of AOSP permissions [61], [86], over-
privileged apps [67], [71], [82], detecting vulnerabilities and
weaknesses in the permission system [65], [66], [74], [76], [84],
[85] and assessed the efficacy and transparency of Android’s per-
mission model to empower users [72], [73], [78], [90]. Multiple
tools were also created to study AOSP permissions. Felt et al.
presented Stowaway, the first dynamic analysis tool to determine
if all permissions requested by a given app are actually used
in runtime [71]. The authors ran Stowaway on 900 Android
apps and found that around 35% of them asked for unnecessary
permissions (i.e., they were not used on the app’s code). They
demonstrated that over-privileged apps are typically the result of
developer errors (e.g., legacy code, or copied-and-pasted code).
Au et al. proposed PScout, a static analysis tool to automatically
infer the specification of the permission system from Android
2.2 to Android 4 [61]. Their main objective was to determine
if, given the large number of permissions offered by the OS
(79 at the time of publication), there was any overlap in the set
of protected APIs for a given pair of permissions, and found
only one such pair. The authors also noted the presence of
undocumented APIs and permissions, but show that such APIs
are rarely used by third-party app developers.

Backes et al. addressed the same problem and built a static
runtime model of the Android permission framework [62] to

create a more complete and recent mapping of API calls to per-
missions. The authors studied permission locality (i.e., whether
permissions are enforced only by one particular service). They
showed that 20% of the analyzed permissions are checked by
more than one single class, making enforcement of permissions
a more complex task, as it violates the principle of separation of
duties (i.e., in this case, multiple AOSP components are respon-
sible for enforcing the same permissions). Finally, Reardon et al.
revealed how app developers exploited covert- or side-channels
to gain access to permission-protected data, thus circumvent-
ing the Android permission model. For example, developers
gathered the MAC address of the device without holding the
otherwise-required permission by calling ioctl() [84].

A. Custom Permission Analysis

The research literature on custom permissions is very narrow.
Tuncay et al. [87] revealed vulnerabilities on Android’s permis-
sion system related to custom permissions. They described a
custom permission upgrade attack that exploits the permission
groups to be able to enable any dangerous permission without
user awareness and approval. They also discussed a confused
deputy attack that exploits the lack of enforcement on naming
conventions to access signature custom permissions with an app
that is not signed with the same certificate as the defining app.
Both attacks were acknowledged and fixed by Google. The lack
of enforcement on naming conventions has both transparency
and security implications. Bagheri et al. [63], [64] formally
validated the Android permission model and showed that the
lack of compliance with the naming conventions for custom
permissions allows an attacker to access components protected
by a custom permission in the victim app, in a way akin of the
confused deputy attack described by Tuncay et al..

Li et al. show how custom permissions can be used to gain
access to APIs otherwise protected by AOSP permissions [79].
The authors develop CuPerFuzzer, an automatic fuzzing tool
that they use against the Android OS. This tool allowed them
to discover four design shortcomings of the permission system,
which were reported to Google and fixed by the Android security
team. However some of these attacks need user interaction to be
carried out, which renders them less practical. Their attack has
since been fixed in Android 10.

Finally, in our prior work, we performed a preliminary anal-
ysis on the Android supply chain [75] and identified a large
number of custom permissions in pre-installed apps, many
embedded even in core Android components. Our preliminary
study, however, did not perform any systematic analysis of their
associated privacy and security risks, nor about its usage by
regular apps.

IV. DATA COLLECTION

For this paper, we gathered a large-scale dataset of both user-
installed and pre-installed Android apps between 2019 and 2022
as shown in Table I that offers a holistic perspective of apps
exposing and requesting custom permissions.

Public App Stores: We implemented a purpose-built crawler
to download apps and their associated metadata from several

GAMBA et al.: MULES AND PERMISSION LAUNDERING IN ANDROID: DISSECTING CUSTOM PERMISSIONS 1805

TABLE I
NUMBER OF UNIQUE APPS (BY THEIR MD5 HASH) AND CUSTOM

PERMISSIONS PER SOURCE

public app stores at scale: Google’s Play Store [25], Tencent [44],
APKMonk [13], Xiaomi’s Mi Store [45], Baidu [14], APK
Mirror [12], Huawei [27], and Qihoo 360 [40]. We chose these
app stores for their popularity, thus giving us access to a represen-
tative picture of the Android ecosystem including and beyond the
Play Store [88]. We complement this corpus with apps collected
by the AndroZoo project [50].

Pre-Installed Apps: We rely on our dataset of pre-installed
apps that we collected via crowdsourcing mechanisms using
Firmware Scanner, a purpose-built app available on the Play
Store [22]. The dataset contains metadata about the devices (e.g.,
brand, model, and country) in which the apps come pre-installed.
We refer the reader to our paper [75] for a detailed description
of the operation of Firmware Scanner. The dataset contains
1,247,447 apps collected from 58,540 users, representing 17,973
unique device models associated with 783 Original Equipment
Manufacturers (OEMs). To account for different apps sharing
the same package name but potentially manipulated by differ-
ent developers—a common occurrence in pre-installed applica-
tions, where core Android components can be modified by the
vendor—, we identify unique apps by their package name and
certificate.

A. Methodology for Extracting Custom Permissions

We consider any permission to be custom if it never was
in the official list of AOSP permission for any Android re-
lease. We therefore start by extracting the official AOSP
permissions across Android releases by parsing the mani-
fest of the open-source AOSP framework app [10]. Then,
to extract custom permissions, we parse the apps’ mani-
fests and extract <permission> tags for defined permis-
sions, and both <uses-permission> tags and the an-
droid:permission attributes of permissions protecting
apps’ components for requested custom permissions. Using this
approach, we obtain 257,710 unique custom permissions, either
defined or requested ones. Alongside the permission name, we
also extract metadata related to the app that defined or requests

it (e.g., app’s package name and signing certificate), and infor-
mation about the permission itself (e.g., description field and
protection level) to further study the adoption of naming con-
ventions, and developers’ willingness to document their custom
permissions.

Attribution: We leverage Google’s naming recommendation
as a proxy to identify the party responsible for the definition of
custom permissions. For example, com.foo.PERMISSION
has the second-level domain foo.com, which should identify
the author of the custom permission. However, as mentioned
earlier, developers do not necessarily abide by this convention.
Relying on extra signals such as the app’s signing certificate does
not solve this issue, as applications in Android use self-signed
certificates, and previous work showed the existence of appli-
cations purposefully using false information in their certificate
to impersonate other companies [75], [77]. Due to the lack of
robust mechanisms to do sound attribution of apps and custom
permissions, we rely on the naming convention as the only
way to potentially understand who defined a given permission.
However, when available, we rely on online documentation as a
reliable source for (1) attributing permissions to app developers
or SDKs; and (2) inferring what service or data the permission
is protecting. In some cases, we manually inspect the package
name of the app and the signing certificate to enhance our
attribution process but the scale of the dataset prevents us from
performing this process for every single app.

Push Notification Services: Push notifications are messages
displayed to the user, either from a local app, or from a remote
server even when their app is not running on the device. Devel-
opers include a receiver in their app to receive the notifications,
which they protect with a custom permission to prevent other
apps from intercepting the messages. We identified several push
notification services from companies such as Xiaomi [46], Ama-
zon [1], and others [15], [24], [26], [28], [31], [52]. Due to their
widespread use and its supposedly harmless nature, we exclude
205,242 permissions associated with such services for the rest
of the paper. However, we note that it is technically possible for
a malicious app to create a permission resembling the syntax of
a push notification service for harmful purposes. After applying
this filter, we consider 52,468 custom permission names for this
paper, both requested and defined.

B. Ethical Considerations

Our data collection relied on real users that installed Firmware
Scanner on their devices. We follow the principles of informed
consent [69] and avoid the collection of any personal or sensitive
data. The app does collect some metadata about the device
(e.g., its model and build fingerprint) along with some data
about the pre-installed applications (extracted from the Package
Manager), network operator (MNO), and user (the timezone, and
the MCC and MNC codes from their SIM card, if available).
Additionally, using the developer contact details available on
Google Play, we also survey app developers making use of
custom permissions to better understand their rationale and the
reasons why they include them (Section VII). We treat this as
sensitive data since it might have unexpected consequences,

1806 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Fig. 3. Number of custom permissions requested or defined per target API
level, broken down by the origin of the app. For clarity reasons, we exclude
apps that target an API level lower than 15 as less than 0.1% of current Android
devices run such an old version [9].

e.g., for their current and future employment. We therefore only
report statistical and anonymized data, and do not store any
information that could be used to identify a particular developer
or company. In both cases, we consulted our data collection pro-
tocols with IMDEA Networks’ Data Protection Officer (DPO)
and received approval from our institutional ethical review board
to conduct this survey.

V. PREVALENCE OF CUSTOM PERMISSIONS

Table I preliminary results suggest that there is a significant
usage of custom permissions, both requested and defined, re-
gardless of the type of app or its origin. However, these numbers
by themselves do not completely convey the scale and complex-
ity of the custom permissions ecosystem, especially the number
of actors involved. This section measures how widely defined
and requested custom permissions are at the application- and
market-level.

A. Definition of Custom Permissions

Fig. 3 shows the increasing number of defined custom permis-
sion per API level targeted by the app, i.e., as new Android ver-
sions get released. We note that the low number of permissions
for API level 30 and up is due to the fact that our dataset only
contains 85 applications targeting such API levels, all origins
included. We find that the proportion of apps defining custom
permissions is much lower than the proportion of apps requesting
them: only 4% of apps available on app stores define at least one
custom permission versus 26% of pre-installed apps. In fact, the
Android Open Source Project allows OEMs to define and expose
their own services to other apps through custom permissions.

The reasons why custom permissions are declared are diverse.
By comparing the device fingerprint reported by Firmware
Scanner with the prefixes of the custom permissions exposed by
pre-installed apps, we could label 63% as OEM-defined. While
most OEMs define custom permissions, Samsung, Huawei and
Amazon devices tend to define more than the average. In fact,
just Samsung defines 4,822 custom permissions, 109 of which
are related to Samsung’s Knox framework, a proprietary secu-
rity framework that offers features like access control, mobile
device management, and VPN capabilities [35], [37], [43].

Fig. 4. Number of custom permissions defined by core Android components.
Note that we do not include theandroid app in this plot for readability reasons.

Fig. 5. Base protection level usage per origin of the app for defined custom
permissions.

Anecdotally, we found a Samsung device that defines as many
as 664 custom permissions. Many OEM permissions are de-
fined by core Android components (e.g., the default dialer app
(com.android.phone) customized by OEMs to add their
own features and services. Fig. 4 renders a boxplot of the number
of custom permissions defined by such core apps. This shows the
high number of potential vulnerable features made available by
privileged and critical pre-installed apps to other applications,
including applications distributed through Android stores.

Yet, not only OEMs define custom permissions. By reasoning
about their prefix, 34% custom permissions are related to
companies offering third-party analytics and advertising
SDKs [70], [80], [83] (e.g., Baidu, AppsFlyer) or social
networks (e.g., Facebook, Twitter). For example, according to
their official documentation, the permission com.twitter.
android.permission.AUTH_APP is used for allowing
users of a given app to log in through Twitter, and com.
baidu.permission.BAIDU_LOCATION_SERVICE
is related to Baidu’s map services. Another interesting set
of custom permissions are 6 permissions for enabling IoT
platform integration. For example, the permission ama-
zon.speech.permission.SEND_DATA_TO_ALEXA
relates to Alexa devices [30], while 51 are related to
Google’s Android for cars services [17], including accessing
car-specific information such as the speed of the vehicle
(android.car.permission.CAR_SPEED) or control of
the lights (android.car.permission.CONTROL_CAR_
INTERIOR_LIGHTS).

A. Protection level analysis: As with regular AOSP permis-
sions, custom permissions can set different protection levels to
regulate its access. Fig. 5 shows the protection level of defined
custom permissions per app type. This figure shows that 39% of
the custom permissions are defined with a signature protec-
tion level. When considering exposed custom permissions with a

GAMBA et al.: MULES AND PERMISSION LAUNDERING IN ANDROID: DISSECTING CUSTOM PERMISSIONS 1807

signatureOrSystem protection level, this proportion rises
up to 86%. This means that the majority of custom permissions
will only be granted to apps that share a signing certificate with
the declaring app as we will study at the end of this section.1

More concerning is the fact that 11% of the permissions are
defined with the normal protection level. Motorola, HTC and
Xiaomi define a total of 170 , 193 , and 269 custom permissions
with the normal protection level. For Samsung, this number
goes as high as 867 custom permissions. Therefore, any app
installed on the same device will automatically get granted these
permissions at installation time unless the developer defining
the permission implements other access control mechanisms
programmatically (e.g., by checking the package name of the
calling app). Unfortunately, the lack of public information about
the actual purpose of these custom permissions (or the type of
data or service that they protect) and tools for automatically
analyzing their risks has historically prevented us from assessing
whether sensitive data is left unprotected, as we will demonstrate
in Section VII.

B. Requests of Custom Permissions

Fig. 3 shows the number of requested custom permissions
per target API level and origin of the app. In general, 30%
of apps published in public app markets request at least one
custom permission but this number is significantly higher (62%)
for pre-installed apps. When ranking them by their prefix and
popularity—which we define as the number of apps requesting
them—we can observe clusters of popular custom permissions.
Table 6 in the appendix, available online, shows the top 20 most
requested custom permissions, along to their potential creator
which we infer from the Subject field of the app signing
certificate and its prefix. As we can see, Google Mobile Services
(GMS) permissions are requested by more than 10,000 apps
and they enable Google-related functionalities related to in-app
purchases [54] (com.android.vending.BILLING),
the Play Install Referrer Library [51], [53] (com.google.
android.finsky.permission.BIND_GET_INSTALL
_REFERRER_SERVICE) and Google Sign-In [48] (com.
google.android.gms.auth.api.signin.
permission.REVOCATION_NOTIFICATION). Samsung
permissions are also amongst the most widely requested by app
developers.

B. OEM-specific custom permissions: Fig. 6 shows that cus-
tom permissions defined by pre-installed apps are likely to be
requested by more apps than those defined by publicly available
apps. Specifically, the median number of requesting apps per
permission is of 587 and 36 for pre-installed and publicly
available apps, respectively. This confirms the importance of
inspecting potential vulnerabilities on pre-installed apps, as we
will further discuss in Section VII.

1We note that the protection level signatureOrSystem is deprecated
since API level 23 (Android 6.0) [41] and it is semantically equivalent to the
signature base protection type with the privileged flag, which allows an
app installed on the system partition to be automatically granted the permission
when requested [18].

Fig. 6. Number of apps requesting custom permissions in our dataset, broken
down by the origin of the defining app.

Fig. 7. Number of requested permissions defined by pre-installed apps, broken
down by the origin of the requesting app (left side) and OEM (right side).

Fig. 7 provides a more detailed perspective on how the
OEM-specific permissions for the top-10 Android OEMs are
requested by publicly available apps.2 For completeness, we
include Google Mobile Services permissions exposed by pre-
installed apps on 87% of the devices in our dataset. We group
the remaining vendors under the “Others” label. We can infer
two things from this figure: (i) a large number of permissions
exposed by pre-installed apps are primarily requested by other
pre-installed applications, which could indicate the existence of
partnerships between actors of the supply chain of Android de-
vices; and (ii) apps from all app stores do request OEM-defined
permissions. Specifically, a total of 43,517 applications in our
dataset request Samsung Knox permissions, but 98% of them

2We infer OEM popularity by the number of users with devices of a given
OEM in our dataset. Yet, our top-10 vendors correlate to publicly available
Android market shares [32].

1808 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

TABLE II
MOST POPULAR SECOND LEVEL DOMAINS FOR CUSTOM PERMISSIONS

DEFINED OR REQUESTED BY APPS ON PUBLIC STORES

are other apps pre-loaded on Samsung devices. Those apps dis-
tributed through Google Play and requesting Knox services are
mostly professional applications like Cisco Webex, and MDM
solutions. This confirms that the important role of pre-installed
apps in the development of Android applications and the need
for assessing their security and privacy risks.

B. Market-level differences: At the market-level, we see that
apps published in Xiaomi Mi, Tencent and Huawei app markets
tend to request more custom permissions than apps published in
Google Play. We note that some markets are more recent than
others. For instance, the Huawei app store was only launched
globally in 2018 [29]. Their short age might explain why the
usage of custom permissions in Huawei’s market is higher
for higher API levels. Nevertheless, the declaration of custom
permissions in Android apps grows with new Android releases:
the median number of requested custom permissions between
API levels 15 and 25 (both included) is 5,303.5 per API level,
while for API levels 26 to 31 (478,244 of all apps in our dataset),
the median rises up to 9,550 requested custom permissions per
API level.

Table II shows the most requested permission (grouped by
their SLDs) for apps publicly available on public app stores.
These figures stress the importance of Google permissions in
Android app development, being the most popular requested
permissions in half of the markets we cover. Google apps
present on Google Play (including very popular ones such as
YouTube, GMail or the Google Play Services app which is also
pre-installed on any Google-certified device) define as many
as 183 custom permissions with the com.google prefix.
We find that the android.permission prefix is the most
requested permission in app stores from China. For instance,
the android.permission.DOWNLOAD_WITHOUT_
NOTIFICATION permission (which is not part of AOSP) is
requested by 5,757 applications on the Baidu app store alone.
Permissions seemingly from Google (i.e., in the google.com
SLD group) are still in the most popular ones in Chinese
markets, but followed by well-known Chinese companies such
as Tencent or Sina Corporation. This shows a geographical
divide between Chinese app stores and Google Play.

B. Signature permissions: One final aspect to consider is the
link between exposed and requested custom permissions with
signature level, as they can be automatically granted during

installation time. When a custom permission has a signa-
ture or signatureOrSystem protection level, we check
the certificate(s) of both the defining and requesting app, and
identify cases where both apps have at least one certificate in
common. This approach allows us to reproduce the behavior of
the Android OS at granting these permissions.

We focus on custom permissions that are declared by pre-
installed apps, as those apps are inherently more trusted by
the operating system [75]. We find that custom permissions
declared by pre-installed apps are mostly requested (and, in this
case, granted) to other pre-installed apps: out of the 586,354
apps that would be granted signature or signature-
OrSystem permissions, 99.9% of them are pre-installed. We
find 13,717 apps (2.3% of the total) on public markets that
would also be granted such permissions automatically. In par-
ticular, we find that some Facebook apps—including the offi-
cial Facebook app (com.facebook.katana) and Facebook
Messenger (com.facebook.orca—request custom permis-
sions defined by other pre-installed apps signed by the same
certificate, hence most likely Facebook apps too. Such per-
missions include com.facebook.appmanager.ACCESS
or com.facebook.receiver.permission.ACCESS,
which are not publicly documented. It is possible that these per-
missions are potentially related to partnerships and data-sharing
practices between Facebook and OEMs as revealed in 2018 by
the New York Times [81].

VI. NAMING AND DECLARATION CONVENTIONS

Google recommends app developers to define custom per-
missions following a clear naming convention and to add a
description of the purpose of the custom permission. We find
that this recommendation is not enforced. Figs. 8(a) and (b)
show the scale and complexity of the problem for a subset of
custom permissions that are requested by at least 2,000 apps
in our dataset. Using the attribution methodology described in
Section IV-A, we cluster this subset of popular custom permis-
sions into 67 second-level domains (SLDs). When analyzing all
custom permissions in our dataset, we find a total of 11,209
SLDs groups, the majority of which (65%) only contain one
custom permission, and 94% five or less. Without proper and
verifiable naming conventions, nor a clear description of the
services and data protected by custom permissions, users cannot
take informed decisions when granting custom permissions to
apps. In fact, a malicious app developer could easily confuse
users by (intentionally) impersonating a well-known prefix, such
as com.google or com.samsung. In this section, we em-
pirically measure whether app developers exposing permissions
follow recommended practices.

A. Naming Convention Violations

We find naming convention violations to be widespread. Ta-
ble III lists the percentage of definitions that fail to adhere to the
naming convention, broken down per origin. The percentage
of permission declarations that fail to adhere to the naming
convention varies from 8% to 33% on public app stores. For

GAMBA et al.: MULES AND PERMISSION LAUNDERING IN ANDROID: DISSECTING CUSTOM PERMISSIONS 1809

Fig. 8. Treemap and phylogenetic tree of custom permissions requested by at least 2,000 apps each, grouped by their second level domain.

TABLE III
NUMBER OF CUSTOM PERMISSIONS DEFINITIONS THAT DO NOT FOLLOW THE

NAMING CONVENTION

pre-installed apps, almost half (47%) of custom permission
declarations break the naming convention.

An example of such a violation is the com.qualcomm.
permission.QCOM_AUDIO permission, defined by the
com.verizon.obdm_permissions app. Not only are the
SLDs of the package name (qualcomm.com, a chipset manu-
facturer) and of the custom permission (verizon.com, a net-
work operator) different, but the Subject field of the signing

certificate of the app mention a third entity, Google. In that case,
it is impossible to attribute with certainty the custom permission
to any of these entities.

Some violations are due to developers choosing to use
the same prefix as AOSP permissions, which can also
confuse the end user into granting a permission, thinking
it was created by the operating system, such as android.
permission.DOWNLOAD_WITHOUT_NOTIFICATION,
or android.permission.RECORD_VIDEO. In
total, we find 722 custom permissions that use the
android.permission prefix. This high number of
permissions using AOSP prefixes is surprising as OEMs
are explicitly forbidden from adding permissions to the
android.* namespace as part of their customization of
the OS [5]. Yet, we find that 87% of the apps defining at
least one of the 722 custom permissions that we identified
are pre-installed applications, which could be a breach of the
CDD. This issue is still present in recent versions of Android:
we find that 226 of these permissions (31% of the total) are
defined by apps pre-installed on devices running Android
11 or 12. Anecdotally, we observe instances of applications
requesting custom permissions with names that are similar to
those of well-known AOSP permissions, but with typos. We
find, for instance, custom permissions that include the string
andorid instead of android, CORSE_LOCATION instead
of COARSE_LOCATION, or RUN_TIME instead of RUNTIME.

1810 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

TABLE IV
PERCENTAGE OF CUSTOM PERMISSIONS DEFINITIONS (GROUPED BY THEIR

SLD OR NOT) WITHOUT DESCRIPTION

We also find evidence suggesting that some naming violations
might be due to embedded third-party SDKs or components
integrated in the app: if an app embeds an SDK that defines
a custom permission, that permission will be in the manifest
of the host app (as explained in Section II), and most likely
result in a violation of the naming convention (unless both
the app and the SDK share the same package name). For
instance, the app com.iugome.lilknights (an RPG
game available on Google Play) defines the permission
com.facebook.orca.provider.ACCESS, which
seems to be associated with the Facebook Messenger app.
Another more complex example is the com.verizon.
permission.ACCESS_REMOTE_SIMLOCK permission,
defined by the com.mediatek.op12.phone app. Not only
are the SLDs of the package name (mediatek.com, a chipset
manufacturer) and of the custom permission (verizon.com,
a network operator) different, but the signing certificate of the
app mentions a third entity: TCL, a phone manufacturer.
Unfortunately, the lack of developers’ compliance and
third-party control by app markets defeats any automatic
effort to perform accurate attribution of custom permissions to
the responsible party.

B. Documentation for Custom Permissions, or Lack Thereof

One option to better understand custom permissions would be
to look at their descriptions on the Android Manifest file. While
documenting custom permissions is a practice recommended
by Google [47], it is not mandatory for developers and we
find that in 75% of the cases this field is just empty. Table IV
shows the percentage of custom permissions definitions without
description broken down by the origin of the apps. We also give
the percentage of custom permissions without description when
grouped by their prefix SLD. As it can be observed, applications
very often lack custom permissions’ description when regardless
of their origin market.

We also find that when developers provide a custom per-
mission description, it is often vague and does not de-
scribe accurately what their actual purpose is (e.g., “Quick
connect” or “Dolby Tuning permission description”). In

some cases, the suffix of a permission can render use-
ful for inferring their purpose. We find custom permissions
that use the exact same suffix as official AOSP permis-
sions, such as com.oppo.permission.safe.CAMERA or
thinkyeah.permission.READ_SMS. In total, we find
142 unique custom permissions with a normal protection level
that use the same suffix as adangerousAOSP permission, and
1,334 with asignature orsignatureOrSystem suffix. It
is unclear to us why these developers might try to replicate AOSP
permissions, and this might suggest that they could provide
covert access to AOSP-protected system resources and data.
Nonetheless, such a string-based analysis is not conclusive in
itself, and requires further code-level investigation.

Finally, we find that online documentation explaining which
company is behind a given permission and what is the function-
ality or data protected is very scarce. In fact, we manually looked
for public documentation for the permissions in our dataset
using online search engines and do not find publicly available
documentation for most of them (94%). This is a highly manual
and time-consuming task, and thus we could not realistically
manually search for 257,710 permissions. Instead, we rank the
permissions by their prevalence and focus our manual efforts
on those that are most highly used. For the lesser known per-
missions, we implement an automatic crawler that relies on the
DuckDuckGo API to search for documentation relevant to the
permission. Furthermore, we also crawl StackOverflow forums
to find discussions revolving around the permission. Even when
combining automatic and manual analysis of different resources,
we are barely ever able to find any information relevant to a
given permissions functionality. This suggests that inferring the
purpose of a custom permission requires analyzing the code of
the app.

VII. DETECTING LEAKY CUSTOM PERMISSIONS

The main goal of the Android permission system is to protect
sensitive system APIs from unwanted access without explicit
user consent. However, custom permissions also make the An-
droid permission model vulnerable to an elevation of privilege
attack, as highlighted by Tuncay et al. [87] and Bagheri et
al. [63], [64]. In this scenario, we hypothesize that an app can
obtain access to sensitive data, or to perform an action that is
protected by an AOSP permission, and then make it available to
other apps via a custom permission that has a lower protection
level than the original AOSP permission.

Fig. 9 illustrates this situation.App1 first tries to get the user’s
location through the official API but either lacks the necessary
AOSP permission or the user rejects the request, so it is denied.
Then,App1 sends anIntent [57] to theshareLocService
service exposed by App2. This component is protected by a
custom permission that App1 holds. App2 also holds the AOSP
location permission, so it is able to successfully obtain the
user’s location. App2 then sends back the location to App1 as a
response to its Intent.

In this particular scenario, App1 and App2 do not necessarily
need to cooperate. The result is identical ifApp2 fails to correctly
protect its service, e.g., by giving access to it with a permission

GAMBA et al.: MULES AND PERMISSION LAUNDERING IN ANDROID: DISSECTING CUSTOM PERMISSIONS 1811

Fig. 9. Scenario where an attacker bypasses the permission model using a
service protected by a custom permission. The circled numbers indicate the
order of each step.

that has a normal protection level. This creates a vulnerability
that an attacker could exploit simply by sending an Intent to
the service to retrieve the location. In the attack above, the only
user interaction that will occur would be at step three, where the
OS will display a popup window to ask the user if they wish to
allowApp2 to access the location. If the user had already granted
such a permission to App2, then the attack will play out without
any user interaction.

A. Tooling

Android’s custom permissions are asynchronous software
artifacts that are difficult to monitor, model, and study. While
there is a vast arsenal of highly useful static and dynamic
analysis tools to study many harmful and privacy-intrusive be-
haviors on Android, none of them are fit to effectively infer
the purpose of custom permissions and to determine whether
they expose sensitive data or system resources. For example,
Flowdroid [60] allows tracking data flows within a given com-
ponent, but it is unable to handle neither inter-component nor
inter-app communication—both of which are essential in the
analysis of custom permissions. Similar limitations are present
in Amandroid (since renamed Argus-SAF) [89] which is able to
detect inter-component leaks but it does not detect information
leaks between apps through components protected by a custom
permission. Finally, PScout [61] analyzes permissions by map-
ping them to AOSP APIs, and it is not intended for understanding
what these permissions are protecting or for determining the
purpose of a custom permission. Furthermore, typical analysis
challenges such as software obfuscation, dynamic code loading,
or deodexing of compiled pre-installed software further compli-
cate the analysis of custom permissions.

To overcome these technical limitations and challenges, we
create permissionTracer and permissionTainter,
two complementary tools tailored to the analysis of custom
permissions:

Tool 1: permissionTracer We create permission-
Tracer, a triage tool to extract information about the data
type or features protected by custom permissions. Given an
application defining custom permissions, the tool analyzes all
components protected by such permissions and reports: (i) the
data types of return values and method prototypes that an app
can access when interacting with said component; and (ii) the
list of APIs protected by AOSP permissions accessed within

the component’s methods. The ability to extract this knowledge
allows determining whether components protected by custom
permissions could potentially allow access—by mistake or by
design—to restricted data to an app that does not hold the
required AOSP permission and which ones might require manual
verification. The way permissionTracer analyzes a pro-
tected component depends on its type:
� For activities and broadcast receivers, it looks for the
setResult method and extracts its return data type.

� For content providers (which work as a database for other
applications), permissionTracer obtains the type of
the getType method.

� For services where no data is returned, it extracts and
parses the method prototypes (i.e., method name, re-
turn type, and parameter types) from all the interfaces
that are returned by the onBind method. The type of
data (e.g., String or Android objects such as An-
droid.location.Location) allows understanding
the kind of information (e.g., contacts or location) it might
expose.

permissionTracer follows a tree search of all method
calls and parses the Smali code of each method looking for
API calls. This process involves multiple steps. First, per-
missionTracer extracts and classifies all methods as either
external, i.e., not defined by the app being analyzed like AOSP
calls, or internal. For the external calls, permissionTracer
looks at whether an AOSP permission is needed to invoke the
method using our permission mappings.3 For internal methods,
it adds them to a stack and traverses them recursively once the
current method has been analyzed. We limit the stack size to
an arbitrary limit of 7 method calls. To that end, we modify
Androguard [2] to load our AOSP permission mappings, and
to obtain the list of permission protected APIs accessed in a
given class. We evaluate permissionTracer by manually
inspecting the Android components protected by custom per-
missions across 400 APKs. From those, we manually extract
the objects and value types that the components return, and
compare this to the output of permissionTracer in the
dataset. We do not find any false positive or false negative in
the output of our tool. We make our modifications publicly
available along with permissionTracer’s code and AOSP
permission mappings.

Tool 2: permissionTainter permissionTracer
cannot discover potential leaks of data protected by AOSP per-
missions. To aid in this task, we build permissionTainter,
a static taint analyzer developed to study custom permissions
on top of our modified version of Androguard. permission-
Tainter starts by looking for intent filters that are registered by
the application that are not already defined in the app’s manifest.

3To extract the list of protected AOSP APIs, we update Axplorer’s map-
pings [62] with (1) mappings provided by Android Studio IDE [8]; This includes
lint scripts to warn developers if they use certain API calls without requesting
the associated permission. and (2) knowledge extracted from the AOSP source
code to see the prototypes of methods that use the @RequiresPermission
annotation [42], which indicate the permission(s) that need to be granted to an
app in order to invoke a given AOSP method. To the best of our knowledge, we
are the first to follow this easy-to-update approach to obtain a more complete
and fresh mapping of API calls to AOSP permissions.

1812 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Then, it parses the DEX code to look for intents and handlers,
and tries to associate them with their target. For intents, the
target can be explicitly set by the app, or implicit in the case of
broadcasted intents. In the latter case, we use the list of intent
filters to determine the classes that would receive such an intent.

After this step, permissionTainter enriches the anal-
ysis object created by Androguard (which contains, among
other elements, all the classes, methods and the cross-references
between them) to add extra cross-references to account for asyn-
chronous communications, such as intents. Essentially, per-
missionTainter creates a graph representing the whole
DEX code where vertices are methods and edges are methods
calls, which now include asynchronous communications as well.

Finally, permissionTainter relies on the default
sources and sinks used by Flowdroid [23] along with the modifi-
cations shown in Table 7 of the appendix, available online. It also
considers any AOSP API protected by an AOSP permission as
a source. permissionTainter first locates all calls to sink
methods and, for each occurrence, builds a call graph rooted
at that method. It then looks for any call to a source method
in that call graph and extracts all paths from the sources to the
sinks. A path in the call graph indicates that the value returned
by the source method could make its way to the sink. per-
missionTainter then follows each path in the call graph
and creates the corresponding control flow graph (CFG). Again,
permissionTainter looks for all paths from the source to
the sink, this time in the CFG, and applies tainting rules to detect
potential misuses.

Limitations: Both of our tools suffer from a number of lim-
itations which are common to other static analysis approaches
for Android apps. They cannot detect calls to protected APIs
that are called by other components loaded dynamically during
runtime (e.g., using Java’s reflection [58] or JNI APIs). While
they can tell if a component uses permission-protected APIs,
they cannot guarantee that the component will be actually used
in runtime. Moreover, pre-installed applications can use ODEX
instead of DEX files, which are stored alongside the APK file.
Because of limitations in our data collection strategy, we may
miss the ODEX file associated with an APK, which prevent us
from doing any code analysis. Lastly, our tools cannot detect if an
app manually implements access control mechanisms (e.g., by
checking the package name of the calling app upon receiving an
intent). Such an analysis must therefore be conducted manually,
after detection of a potential case of abuse.

B. Analysis Results

We run both tools on our dataset of 96,748 unique applications
exposing custom permissions to protect 214,943 components.4

Using permissionTracer, we find that 24,648 of those
components (11%) access at least one API protected by an AOSP
permission, and 16% of those components access at least one
API protected by an AOSP permission with a dangerous

4Note that given the scale of our dataset, we only analyse the latest version
of each package and, in the case of pre-loaded apps, we define as unique apps
those unique combinations of package names and signing certificates.

protection level. This tool allows us to identify the following
behaviors:

B. Sensitive components: We find that 1,209 components
(over 2,192 apps) use a custom permission with a normal
protection level. These components are essentially unprotected,
as the normal protection level allows any app on the device to
request and be granted the permission. 55% of these apps are
pre-installed. For example:
� 950 of those components access APIs protected by the
READ_PHONE_STATE permission, which grants access
to non resettable device identifiers such as the IMEI until
Android 10, which can be used for user tracking [16].

� 497 components access location data protected by the
ACCESS_COARSE_LOCATION permission, while 422
access ACCESS_FINE_LOCATION.

� We find 134 components accessing APIs protected by
READ_PRIVILEGED_PHONE_STATE, which also gives
access to unique identifiers, and 58 components accessing
APIs protected by WRITE_SECURE_SETTINGS which
allows for the modification of the system preferences of
the device.

Such findings do not necessarily indicate a malicious intent
from the developer, but insecure development practices that
could be exploited by malicious actors to access AOSP-protected
data without user awareness. This is particularly concerning
with normal custom permissions, which are granted auto-
matically at install time. An example of such a permission is
melons.dialer.permission.CALL_LOG, defined by a
dialer app that was published on Google Play. This permission
has a normal protection level and protects a content provider
that allows other apps to read and delete entries from the call log.
The application implements access control simply by checking
the package name of the caller app, and only allows queries from
package names in a hard-coded list of messenger apps, including
some from the same developer. Thus, an attacker just needs to
use one of these packages names for their app and then query the
dialer app to read or delete call log entries without requesting
the AOSP permission. We tested and verified this vulnerability
dynamically with a proof-of-concept app.

We also study in detail the return types of the 3,780
methods that permissionTracer detected. Unsurprisingly,
we find that most methods return void, boolean, or integer
values (36% , 29% and 16% of the cases, respectively).
However, the method returns Android objects in 123 cases.
For instance, the mobi.maptrek.lite app defines
the mobi.maptrek.lite.permission.RECEIVE_
LOCATION permission (normal protection level) to protect
a service that defines a getLocation() method, which
returns a Landroid/Location/Location object. Further
analysis of the app code shows that the service makes the user
location available to any colluding application that requires
the custom permission. The app defining this permission is an
offline map app, intended to be used during outdoor activities
when the user has no Internet connection. The app is available
on Google Play Store and has been downloaded over 10k
times. We verified this attack with a proof-of-concept app,
showing that any app can access the user location without

GAMBA et al.: MULES AND PERMISSION LAUNDERING IN ANDROID: DISSECTING CUSTOM PERMISSIONS 1813

TABLE V
NUMBER OF APPS DEFINING PLACEHOLDER PERMISSIONS AND APPS

DYNAMICALLY ENFORCING CUSTOM PERMISSIONS BROKEN DOWN BY

DATASET OF ORIGIN

requesting the official AOSP permission and without the need
to interact with the developers of the other app. In 19% of the
cases, the methods return a custom object defined by the app
itself.
B. PII leaks: permissionTainter detects 5 po-

tential PII leaks in pre-installed applications. All these apps
implement a similar pattern: upon receiving an intent with a
specific action (which can be discovered by simply analyzing
the source code of the protected component), an attacker can
make the component broadcast an intent which contains the
Wi-Fi and Bluetooth MAC addresses as extras. We find these
apps even in recent Samsung, Asus and LGE devices running
Android version 11. We have not found similar behaviors in apps
published in app stores. Any colluding app that has the correct
intent filter (which can also be simply discovered by analyzing
the component’s source code) can then receive that intent and
get access to the MAC addresses. The MAC addresses can then
be used to uniquely identify a user, or can be used to infer their
location [34].

B. Placeholder permissions: We identify 212,277 applica-
tions defining custom permissions that are potentially unused,
i.e., the permissions is defined but it is never used in the manifest
to protect any of the app’s components. We name those as
“placeholder permissions.” The reasons why they are defined
remain unknown to us but it might be the result of poor devel-
opment practices, such as including code obtained from online
forums or legacy code from older versions of the app. Yet, it
is possible that such apps do not rely on the system’s package
manager to enforce their permission and chose to do so internally
using either checkPermission, enforcePermission,
or one of their variants [56].

To detect such cases, we analyze the binaries of these apps
to look for calls to these methods. We find stark differences
between pre-installed apps, where 51,793 of the apps call one
of the methods, and publicly-available apps, where only 149 of
the apps do so. Overall, only 51,942 of the apps seem to do
dynamic enforcement of custom permissions. Table V shows
the number of apps for which we detected at least one call to
checkPermission,enforcePermission or one of their
variants [56] in the DEX or ODEX code of apps that are defined
but do not protect any component. We grouped together all apps
collected from public app stores or from AndroZoo under the
“Public apps” category.

To gain a better understanding of why so many app developers
define custom permissions but do not protect any component

with it (nor enforce them dynamically), we contacted 529 de-
velopers using the contact email address listed in the public
profile of their apps. We discuss the ethical considerations and
IRB approval in Section IV. Our survey received 53 responses.
Surprisingly, 28% of the developers that responded to us either
did not know that their app defined a custom permission or they
did not know why it was there. In 17% of the cases, an SDK
used by the developer added the permission. In 9% of the cases,
the permission was associated with an old feature that had been
already removed.

Although the scale of our survey is small, it provides some
intriguing perspectives on the reasons behind the widespread
usage of custom permissions. The responses suggest a poor
understanding of the (custom) permission system by some de-
velopers, which could negatively impact users by inadvertently
exposing sensitive data or resources.

VIII. DISCUSSION

Through the course of this research we have uncovered several
problems inherent to custom permissions. As they are, custom
permissions open various avenues for abuse, an issue which is
compounded by a severe lack of transparency in the app ecosys-
tem of Android. This stems chiefly from a lack of enforcement of
software development and platform policies that promote trans-
parency and best development practices. As a result, and as we
demonstrated, finding abuse and errors in custom permissions,
as well as attributing behaviors, is a herculean task, resulting in
a lack of accountability across the ecosystem. In this section, we
discuss our findings and propose workable solutions based on
our observations.

Google, both as the platform operator and the main driving
force behind AOSP, is in a privileged position to mitigate the is-
sues we reported about the use and abuse of custom permissions.
Google has already fixed previously-discovered issues, such
as the permission re-delegation and confused deputy attacks
described by Tuncay et al. [87] but the technical challenges
imposed by custom permissions have impeded the discovery of
insecure implementations as the ones described in this paper. We
next discuss potential strategies to address the issues reported in
this paper.

A. Privilege Escalation

Fixing privilege escalation issues arising from custom per-
missions is complex, as it exploits a functionality inherent
to the Android permission system. One approach to tackle it
would be to determine the AOSP permissions being used in the
protected component to perform a risk assessment using a tool
such as permissionTracer. Note that a dangerous permis-
sion might, nonetheless, be used within a component without
exposing the data protected by it. We believe that the ability
to automatically prevent potential attacks justifies instances in
which the platform enforces a higher permission level (e.g.,
dangerous) for a custom permission than the originally necessary
(e.g., normal). This enforcement can be done automatically by
analyzing the app’s code and it could be introduced as part of
the analysis processes implemented in Google Play Protect [59],

1814 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

the built-in security mechanism present on Android devices and
in the Google Play Store.

B. Transparency and User Control

Requiring app developers to include a better description of
the purpose and the potential risks associated with their de-
fined custom permissions is an important and much-needed
first step to improve transparency, promoting user awareness,
and empowering user control. We understand that developers
can still be obscure or deceitful in describing the purpose of a
permission. To make this more effective, we suggest extending
the description field with a mandatory risk self-assessment done
by the developer. Such assessment might consist of a few key
questions with a set of predefined answers regarding the data and
features accessed or shared by the permission. Software distri-
bution channels can verify and enforce permission description
sanity, at least at a basic level. Furthermore, this could be a way
to ensure that developers do not define custom permissions that
are unnecessary, reinforcing the practices already implemented
by Google to encourage developers to minimize the access to
sensitive permissions via permission nudges [82].

Another step in the right direction would be to inform users
about the custom permissions requested and defined by an app.
Right now, a custom permission is only shown to the user when
requested, if the developer itself decides to give it a danger-
ous protection level. The risk self-assessment discussed above
should be the basis to convey the information effectively. The
replies to the set of questions could be leveraged to automatically
decide the protection level of the custom permission, instead
of leaving this decision to the developer. Finally, the platform
should offer users a mechanism to revoke previously granted
custom permissions, both individually for a particular app or
globally within the system through a blocklist.

C. Accountability

The attribution problem in Android extends beyond custom
permissions as it is rooted in the absence of a reliable way of
tracing an app back to its developer. One potential solution to
this problem would be for Google to require app developers
to take ownership of their apps through a centralized certificate
solution. This, in turn, allows users to know the true developer of
the apps, as well as the entity that exposes the custom permission
to other apps (which itself could be an embedded third-party
component). Additionally, custom permissions should add a
definer tag to their definitions so that a user would always know
who is the actor behind a given custom permission as in the case
of permissions defined by third-party components embedded in
the app.

IX. CONCLUSION

In this paper, we presented a holistic view of the prevalence of
custom permissions in the Android ecosystem and their inher-
ent transparency, security and privacy problems. Our findings
suggest that, despite this being a widely used feature in both
pre-installed and publicly available apps, custom permissions

lack transparency, accountability, and it is the source of potential
security and privacy harm for end users. We hope that our
work will bring more focus to the issues surrounding Android’s
custom permissions ecosystem. In an effort to foster more re-
search efforts in this area, we make available our dataset of
custom permissions [20], [21], as well as the source code of our
tools, permissionTracer [38] and permissionTain-
ter [39], to the research community, platform operators, and
regulators.

ACKNOWLEDGMENTS

The opinions, findings, and conclusions or recommendations
expressed are those of the authors and do not necessarily reflect
those of any of the funders.

REFERENCES

[1] Amazon Push Notification Service, Accessed: Feb. 03, 2021. [On-
line]. Available: https://developer.amazon.com/docs/adm/integrate-your-
app.html

[2] Androguard, Accessed: Mar. 19, 2019. [Online]. Available: https://github.
com/androguard/androguard/

[3] “Android certified partners — brands,” Accessed: Jul. 07, 2020. [Online].
Available: https://www.android.com/certified/partners/

[4] Android Certified Partners — ODMs, Accessed: Jul. 07, 2020. [Online].
Available: https://www.android.com/certified/partners/#tab-panel-odms

[5] “Android comptability document — permissions,” Accessed: Jul.
07, 2020. [Online]. Available: https://source.android.com/compatibility/
android-cdd#9_1_permissions

[6] Android Developers, Accessed: May 29, 2019. [Online]. Available: https:
//developer.android.com/guide/topics/manifest/permission-element.html

[7] “Android developers - define a custom app permission,” Accessed:
Jul. 25, 2019. [Online]. Available: https://developer.android.com/guide/
topics/permissions/defining

[8] “Android Studio code annotations,” Accessed: Mar. 23, 2020. [Online].
Available: https://android.googlesource.com/platform/tools/adt/idea/+/
refs/heads/mirror-goog-studio-master-dev/android/annotations/android/

[9] “Android version distribution statistics,” 2020. Accessed: May 31, 2020.
[Online]. Available: https://www.xda-developers.com/android-version-
distribution-statistics-android-studio/

[10] Androidmanfiest.xml, Accessed: Jul. 29, 2019. [Online]. Available:
https://android.googlesource.com/platform/frameworks/base/+/refs/
heads/master/core/res/AndroidManifest.xml

[11] android:sharedUserId, Accessed: Mar. 15, 2021. [Online]. Avail-
able: https://developer.android.com/guide/topics/manifest/manifest-
element#uid

[12] APK Mirror App Store, Accessed: May 28, 2020. [Online]. Available:
https://www.apkmirror.com/

[13] APK Monk App Store, Accessed: May 28, 2020. [Online]. Available:
https://www.apkmonk.com/

[14] Baidu App Store, Accessed: May 28, 2020. [Online]. Available: https:
//shouji.baidu.com/

[15] Baidu Push Notification Service, Accessed: Feb. 03, 2021. [Online].
Available: http://push.baidu.com/doc/android/api

[16] “Best practices for unique identifiers,” Accessed: Apr. 01, 2021. [Online].
Available: https://developer.android.com/training/articles/user-data-ids

[17] Cars | Android Developers, [Online]. Available: https://developer.android.
com/reference/android/car/Car

[18] “Commit a90c8de: Add new “preinstalled” permission flag,” Accessed:
Jul. 11, 2019. [Online]. Available: https://android.googlesource.com/
platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b
05079d

[19] “Dataset for sources and sinks,” [Online]. Available: https://github.com/
Android-Observatory/PermissionTainter/blob/master/SourcesAndSinks
_custom_perms.txt

[20] “Dataset of defined custom permissions,” [Online]. Available: https://
androidobservatory.com/files/defined_perms_all_release.json.xz

[21] “Dataset of requested custom permissions,” [Online]. Available: https://
androidobservatory.com/files/requested_perms_all_release.json.xz

https://developer.amazon.com/docs/adm/integrate-your-app.html
https://developer.amazon.com/docs/adm/integrate-your-app.html
https://github.com/androguard/androguard/
https://github.com/androguard/androguard/
https://www.android.com/certified/partners/
https://www.android.com/certified/partners/#tab-panel-odms
https://source.android.com/compatibility/android-cdd#9_1_permissions
https://source.android.com/compatibility/android-cdd#9_1_permissions
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://android.googlesource.com/platform/tools/adt/idea/protect $elax +$/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://android.googlesource.com/platform/tools/adt/idea/protect $elax +$/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://android.googlesource.com/platform/frameworks/base/protect $elax +$/refs/heads/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/protect $elax +$/refs/heads/master/core/res/AndroidManifest.xml
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://www.apkmirror.com/
https://www.apkmonk.com/
https://shouji.baidu.com/
https://shouji.baidu.com/
http://push.baidu.com/doc/android/api
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/reference/android/car/Car
https://developer.android.com/reference/android/car/Car
https://android.googlesource.com/platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d
https://android.googlesource.com/platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d
https://android.googlesource.com/platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d
https://github.com/Android-Observatory/PermissionTainter/blob/master/SourcesAndSinks_custom_perms.txt
https://github.com/Android-Observatory/PermissionTainter/blob/master/SourcesAndSinks_custom_perms.txt
https://github.com/Android-Observatory/PermissionTainter/blob/master/SourcesAndSinks_custom_perms.txt
https://androidobservatory.com/files/defined_perms_all_release.json.xz
https://androidobservatory.com/files/defined_perms_all_release.json.xz
https://androidobservatory.com/files/requested_perms_all_release.json.xz
https://androidobservatory.com/files/requested_perms_all_release.json.xz

GAMBA et al.: MULES AND PERMISSION LAUNDERING IN ANDROID: DISSECTING CUSTOM PERMISSIONS 1815

[22] “Firmware scanner,” Accessed: Mar. 06, 2019. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=org.imdea.networks.
iag.preinstalleduploader

[23] “FlowDroid’s sources and Sinks list,” [Online]. Available: https://
github.com/secure-software-engineering/FlowDroid/blob/develop/soot-
infoflow-android/SourcesAndSinks.txt

[24] “Google maps receive permission,” Accessed: Feb. 03, 2021. [Online].
Available: https://stackoverflow.com/questions/14832911/android-map-
v2-why-maps-receive-permission

[25] Google Play App Store, Accessed: May 28, 2020. [Online]. Available:
https://play.google.com/store/apps/

[26] Google Push Notification Service, Accessed: Feb. 03, 2021. [On-
line]. Available: https://web.archive.org/web/20121004073640/https://
developers.google.com/android/c2dm/

[27] Huawei App Store, Accessed: May 28, 2020. [Online]. Available: https:
//appgallery1.huawei.com/#/Featured

[28] Huawei Push Notification Service, Accessed: Feb. 03, 2021. [On-
line]. Available: https://stackoverflow.com/questions/57860791/how-to-
access-payload-of-hms-push-notifications

[29] Huawei’s Android App Store Launches Internationally, 2018. Accessed:
Jun. 16, 2020. [Online]. Available: https://www.androidheadlines.com/
2018/04/huaweis-android-app-store-launches-internationally.html

[30] Integrate Amazon Device Messaging (ADM), [Online]. Available:
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integrate-
adm.html

[31] Jiguang Push Notification Service, Accessed: Feb. 03, 2021.
[Online]. Available: https://docs.jiguang.cn/en/jpush/client/Android/
android_guide/#configuration-and-code-instructions

[32] “Market share development per Android phone manufacturer,” [Online].
Available: https://www.appbrain.com/stats/top-manufacturers

[33] “Merge multiple manifest files,” Accessed: Jul. 22, 2020. [Online]. Avail-
able: https://developer.android.com/studio/build/manifest-merge

[34] “Mobile advertising network InMobi settles FTC charges it tracked
hundreds of millions of consumers’ locations without permission,”
2016. [Online]. Available: https://www.ftc.gov/news-events/news/press-
releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-
charges-it-tracked-hundreds-millions-consumers

[35] “New permissions names,” [Online]. Available: https://docs.
samsungknox.com/dev/knox-sdk/new-permission-names.htm

[36] permission | Android Developers, [Online]. Available: https://developer.
android.com/guide/topics/manifest/permission-element#desc

[37] Permissions, [Online]. Available: https://docs.samsungknox.com/dev/
common/license-permissions.htm

[38] PermissionTainter, [Online]. Available: https://github.com/Android-
Observatory/PermissionTainter

[39] PermissionTracer, [Online]. Available: https://github.com/Android-
Observatory/PermissionTracer

[40] Qihoo 360 App Store, Accessed: May 28, 2020. [Online]. Available: http:
//zhushou.360.cn/

[41] Rattr, Accessed: Jul. 02, 2019. [Online]. Available: https://developer.
android.com/reference/android/R.attr.html#protectionLevel

[42] RequiresPermission — AndroidX, Accessed: Mar. 23, 2020. [Online].
Available: https://developer.android.com/reference/androidx/annotation/
RequiresPermission

[43] Samsung Knox, Accessed: Apr. 15, 2021. [Online]. Available: https://
www.samsungknox.com/en

[44] Tencent App Store, Accessed: May 28, 2020. [Online]. Available: https:
//android.myapp.com/

[45] Xiaomi Mi App Store, Accessed: May 28, 2020. [Online]. Available: http:
//app.mi.com/

[46] Xiaomi Push Notification Service, Accessed: Feb. 03, 2021. [Online].
Available: https://docs.moengage.com/docs/android-xiaomi-push

[47] “Android developers - define a custom app permission,” 2018. [On-
line]. Available: https://developer.android.com/guide/topics/permissions/
defining

[48] Android Developers - GoogleSignInApi, 2018, Accessed: Aug. 06, 2020.
[Online]. Available: https://developers.google.com/android/reference/
com/google/android/gms/auth/api/signin/GoogleSignInApi

[49] “Android developers - permissions overview,” 2018. [Online]. Available:
https://developer.android.com/guide/topics/permissions/overview

[50] AndroZoo, 2018. [Online]. Available: https://androzoo.uni.lu/
[51] “Google issue tracker - Why Google Play services depen-

dency automatically added com.google.android.finsky.permission.
BIND_GET_INSTALL_REFERRER_SERVICE permission,” 2018,
Accessed: Aug. 6, 2020. [Online]. Available: https://issuetracker.google.
com/issues/78380811#comment22

[52] “Migrate a GCM client app for Android to firebase cloud messag-
ing,” 2018. [Online]. Available: https://developers.google.com/cloud-
messaging/android/android-migrate-fcm

[53] “Android developers - play install referrer library,” 2019, Accessed: Aug.
6, 2020. [Online]. Available: https://developer.android.com/google/play/
installreferrer/library

[54] “Android developers - AIDL to Google Play billing library migration
guide,” 2020, Accessed: Aug. 06, 2020. [Online]. Available: https://
developer.android.com/google/play/billing/migrate

[55] “Android developers - Sign your app,” 2020, Accessed: Aug. 25, 2020.
[Online]. Available: https://developer.android.com/studio/publish/app-
signing

[56] Context - Android Developers, 2020. [Online]. Available: https://
developer.android.com/reference/android/content/Context.html

[57] Intent - Android Developers, 2020. [Online]. Available: https://developer.
android.com/reference/android/content/Intent

[58] Using Java Reflection, 2020. [Online]. Available: https://www.oracle.com/
technical-resources/articles/java/javareflection.html

[59] 2021, Accessed: Apr. 15, 2021. [Online]. Available: https://developers.
google.com/android/play-protect

[60] S. Arzt et al., “FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps,” in Proc. ACM Special Int.
Groupon Program. Lang., vol. 49, pp. 259–269, 2014.

[61] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android permission specification,” in Proc. ACM Conf. Comput. Commun.
Secur., 2012, pp. 217–228.

[62] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber,
“On demystifying the Android application framework: Re-visiting An-
droid permission specification analysis,” in Proc. USENIX Secur. Symp.,
2016, pp. 1101–1118.

[63] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “Detection of design flaws
in the Android permission protocol through bounded verification,” in Proc.
Int. Symp. Formal Methods, 2015, pp. 73–89.

[64] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “A formal approach for
detection of security flaws in the Android permission system,” Formal
Aspects Comput., vol. 30, pp. 525–544, 2018.

[65] K. Block, S. Narain, and G. Noubir, “An autonomic and permissionless
Android covert channel,” in Proc. ACM Conf. Secur. Privacy Wireless
Mobile Netw., 2017, pp. 184–194.

[66] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi, “XMan-
Droid: A new Android evolution to mitigate privilege escalation attacks,”
Technische Universität Darmstadt, Darmstadt, Germany, Tech. Rep. TR-
2011–04, 2011.

[67] S. Chitkara, N. Gothoskar, S. Harish, J. I. Hong, and Y. Agarwal, “Does
this app really need my location? Context-aware privacy management
for smartphones,” in Proc. ACM Interactive Mobile Wearable Ubiquitous
Technol., vol. 1, pp. 1–22, 2017.

[68] L. Deshotels, “Inaudible sound as a covert channel in mobile devices,” in
Proc. USENIX Workshop Offensive Technol., 2014, Art. no. 16.

[69] D. Dittrich and E. Kenneally, “The menlo report: Ethical principles guiding
information and communication technology research,” SSRN Electron. J.,
2012.

[70] Á. Feal et al., Don’t Accept Candy From Strangers: An Analysis of Third-
Party Mobile SDKs, vol. 13, London, U.K.: Bloomsbury Publishing, 2021,
p. 1.

[71] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permis-
sions demystified,” in Proc. ACM Conf. Comput. Commun. Secur., 2011,
pp. 627–638.

[72] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of application
permissions,” in Proc. USENIX Conf. Web Appl. Develop., 2011, Art. no. 7.

[73] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proc. Symp.
Usable Privacy Secur., 2012, pp. 1–14.

[74] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses,” in Proc. USENIX Secur. Symp., 2011,
Art. no. 22.

[75] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-
Rodriguez, “An analysis of pre-installed android software,” in Proc. IEEE
Symp. Secur. Privacy, 2020, pp. 1039–1055.

[76] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Auto-
matically detecting potential privacy leaks in Android applications on
a large scale,” in Proc. Int. Conf. Trust Trustworthy Comput., 2012,
pp. 291–307.

[77] K. Hageman et al., “Mixed signals: Analyzing software attribution chal-
lenges in the Android ecosystem,” IEEE Trans. Softw. Eng., vol. 49, no. 4,
pp. 2964–2979, Apr. 2023.

https://play.google.com/store/apps/details{?}id=org.imdea.networks.iag.preinstalleduploader
https://play.google.com/store/apps/details{?}id=org.imdea.networks.iag.preinstalleduploader
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow-android/SourcesAndSinks.txt
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow-android/SourcesAndSinks.txt
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow-android/SourcesAndSinks.txt
https://stackoverflow.com/questions/14832911/android-map-v2-why-maps-receive-permission
https://stackoverflow.com/questions/14832911/android-map-v2-why-maps-receive-permission
https://play.google.com/store/apps/
https://web.archive.org/web/20121004073640/https://developers.google.com/android/c2dm/
https://web.archive.org/web/20121004073640/https://developers.google.com/android/c2dm/
https://appgallery1.huawei.com/#/Featured
https://appgallery1.huawei.com/#/Featured
https://stackoverflow.com/questions/57860791/how-to-access-payload-of-hms-push-notifications
https://stackoverflow.com/questions/57860791/how-to-access-payload-of-hms-push-notifications
https://www.androidheadlines.com/2018/04/huaweis-android-app-store-launches-internationally.html
https://www.androidheadlines.com/2018/04/huaweis-android-app-store-launches-internationally.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integrate-adm.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integrate-adm.html
https://docs.jiguang.cn/en/jpush/client/Android/android_guide/#configuration-and-code-instructions
https://docs.jiguang.cn/en/jpush/client/Android/android_guide/#configuration-and-code-instructions
https://www.appbrain.com/stats/top-manufacturers
https://developer.android.com/studio/build/manifest-merge
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://docs.samsungknox.com/dev/knox-sdk/new-permission-names.htm
https://docs.samsungknox.com/dev/knox-sdk/new-permission-names.htm
https://developer.android.com/guide/topics/manifest/permission-element#desc
https://developer.android.com/guide/topics/manifest/permission-element#desc
https://docs.samsungknox.com/dev/common/license-permissions.htm
https://docs.samsungknox.com/dev/common/license-permissions.htm
https://github.com/Android-Observatory/PermissionTainter
https://github.com/Android-Observatory/PermissionTainter
https://github.com/Android-Observatory/PermissionTracer
https://github.com/Android-Observatory/PermissionTracer
http://zhushou.360.cn/
http://zhushou.360.cn/
https://developer.android.com/reference/android/R.attr.html#protectionLevel
https://developer.android.com/reference/android/R.attr.html#protectionLevel
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://www.samsungknox.com/en
https://www.samsungknox.com/en
https://android.myapp.com/
https://android.myapp.com/
http://app.mi.com/
http://app.mi.com/
https://docs.moengage.com/docs/android-xiaomi-push
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInApi
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInApi
https://developer.android.com/guide/topics/permissions/overview
https://androzoo.uni.lu/
https://issuetracker.google.com/issues/78380811#comment22
https://issuetracker.google.com/issues/78380811#comment22
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developer.android.com/google/play/installreferrer/library
https://developer.android.com/google/play/installreferrer/library
https://developer.android.com/google/play/billing/migrate
https://developer.android.com/google/play/billing/migrate
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect

1816 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

[78] K. Kennedy, E. Gustafson, and H. Chen, “Quantifying the effects of
removing permissions from Android applications,” in Mobile Security
Technologies, Ann Arbor, MI, USA: Davis?ProQuest Dissertations Pub-
lishing, 2013.

[79] R. Li, W. Diao, Z. Li, J. Du, and S. Guo, “Android custom permissions
demystified: From privilege escalation to design shortcomings,” in Proc.
IEEE Symp. Secur. Privacy, 2021, pp. 70–86.

[80] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and accurate
detection of third-party libraries in Android apps,” in Proc. Int. Conf. Softw.
Eng., 2016, pp. 653–656.

[81] New York Times, “Facebook gave device makers deep access
to data on users and friends,” 2018. [Online]. Available: https:
//www.nytimes.com/interactive/2018/06/03/technology/facebook-
device-partners-users-friends-data.html

[82] S. T. Peddinti et al., “Reducing permission requests in mobile apps,” in
Proc. Internet Meas. Conf., 2019, pp. 259–266.

[83] A. Razaghpanah et al., “Apps, trackers, privacy, and regulators: A global
study of the mobile tracking ecosystem,” in Proc. 25th Annu. Netw. Distrib.
Syst. Secur. Symp., 2018.

[84] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the Android permissions systems,” in Proc. USENIX
Secur. Symp., 2019, pp. 603–620.

[85] A. Sadeghi, H. Bagheri, and S. Malek, “Analysis of android inter-app
security vulnerabilities using covert,” in Proc. IEEE/ACM 37th IEEE Int.
Conf. Softw. Eng., 2015, pp. 725–728.

[86] J. Sellwood and J. Crampton, “Sleeping Android: The danger of dormant
permissions,” in Proc. ACM Workshop Secur. Privacy Smartphones Mobile
Devices, 2013, pp. 55–66.

[87] G. S. Tuncay, S. Demetriou, K. Ganju, and C. Gunter, “Resolving the
predicament of Android custom permissions,” in Proc. Netw. Distrib.
System Secur. Symp., 2018.

[88] H. Wang et al., “Beyond Google Play: A large-scale comparative study
of Chinese Android app markets,” in Proc. Internet Meas. Conf., 2018,
pp. 293–307.

[89] F. Wei, S. Roy, and X. Ou, “Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of Android
apps,” ACM Trans. Privacy Secur., vol. 21, 2018, Art. no. 14.

[90] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and K.
Beznosov, “Android permissions remystified: A field study on contextual
integrity,” in Proc. USENIX Secur. Symp., 2015, pp. 499–514.

Julien Gamba received the PhD degree from the
Universidad Carlos III de Madrid, in 2022, focusing
on user’s security and privacy in Android devices.
He is a data scientist with Cisco Systems. In his
work, Julien uses both static and dynamic analysis,
as well as other techniques specifically designed to
understand the behavior of mobile applications. He
was awarded the Best Practical Paper Award at the
41st IEEE Symposium on Security and Privacy for
his research on pre-installed apps on Android devices.
This study was also featured in major newspaper such

as The Guardian (U.K.), the New York Times (USA), CDNet (USA) or El País
(Spain). He was also awarded the ACM IMC Community Contribution Award
in 2018 for his analysis of domain ranking services, and was awarded the Nor-
tonLifeLock Research Group Graduate Fellowship, the Google PhD Fellowship
in Security and Privacy and Consumer Reports’ Digital Lab fellowship.

Álvaro Feal received the PhD degree from the Uni-
versidad Carlos III de Madrid and IMDEA Networks
Institute, in 2022. He is a postdoctoral fellow with
Northeastern University. During this time, he worked
in Prof. Narseo Vallina-Rodriguez’s research group,
focusing on the analysis of privacy and security is-
sues on mobile and the web. His research has been
published in different venues, such as ACM IMC,
PETS Symposium, and USENIX Security. His work
has received several awards such as the Distinguished
Paper Award at Usenix Security’19, the Personal Data

Protection Research Award “Emilio Aced” from the Spanish Data Protection
Agency (AEPD) in 2020 and 2021 and the CNIL’s Privacy Award in 2021.

Eduardo Blazquez is currently working toward the
PhD degree with the Carlos III University of Madrid.
His research focuses on Android security and privacy
issues, analyzing the Android ecosystem using static
and dynamic analysis techniques. Recently, he was
the first author of the first analysis of Firmware-over-
the-Air applications on Android devices, which was
published at the 42nd IEEE Symposium on Security
and Privacy.

Vinuri Bandara is a currently working toward the
PhD degree with the IMDEA Networks Institute,
supervised by Dr. Narseo Vallina-Rodriguez. Her cur-
rent research focuses on privacy and security analysis
of the android ecosystem along with a focus on pri-
vacy policies and regulations. Her research has been
published at the IEEE International Working Confer-
ence on Source Code Analysis and Manipulation and
ACM Conference on Computer and Communications
Security.

Abbas Razaghpanah is a senior data scientist with
ThousandEyes/Cisco, and a research scientist with
the International Computer Science Institute (ICSI),
University of California, Berkeley. The crux of his
work is the application of network measurements in
various areas of networking and security research. His
work in the area of mobile privacy and security has
been awarded the Distinguished Paper Award at ACM
IMC 2018, Best Practical Paper Award at the 41st
IEEE Symposium on Security and Privacy, the CNIL-
INRIA 2019 award for privacy protection, the 2020

Caspar Bowden Privacy Enhancing Technology Award, and the 2019 AEPD
Emilio Aced Prize for Privacy Research. His work on mobile app privacy has
received international media attention from The Washington Post, CNET, The
Verge, The Guardian, and others.

Juan Tapiador is professor of computer science with
Universidad Carlos III de Madrid, Spain, where he
leads the Computer Security Lab. Prior to joining,
his research interests include binary analysis, systems
security, privacy, surveillance, and cybercrime. He
has served in the technical committee of conferences
such as USENIX Security, ACSAC, DIMVA, ES-
ORICS and AsiaCCS. He has been the recipient of
the UC3M Early Career Award for Excellence in
Research (2013), the Best Practical Paper Award at
the 41st IEEE Symposium on Security and Privacy

(Oakland), the CNIL-Inria 2019 Privacy Protection Prize, and the 2019 AEPD
Emilio Aced Prize for Privacy Research. His work has been covered by interna-
tional media, including The Times, Wired, Le Figaro, ZDNet, and The Register.

Narseo Vallina-Rodriguez received the PhD degree
from the University of Cambridge, in 2014. He is an
associate research professor with IMDEA Networks
and a co-founder of AppCensus Inc. His research
interests include fall in the broad areas of mobile
security and privacy and network measurements. His
research efforts have been awarded with best paper
awards at the 2020 IEEE Symposium on Security
and Privacy (S&P), USENIX Security, ACM IMC’18,
ACM HotMiddlebox’15, and ACM CoNEXT’14 and
Narseo has received prestigious industry grants and

awards such as a Google Faculty Research Fellowship, a DataTransparencyLab
Grant, and a Qualcomm Innovation Fellowship. His research in the mobile
security and privacy domain has been covered by international media outlets
like The Washington Post, The New York Times, or The Guardian and it has
influenced policy changes and security improvements in the Android platform.
Narseo has received in multiple ocassions the recognition of EU Data Protection
Agencies with the AEPD Emilio Aced Award (2019, 2020, and 2021) and the
CNIL-INRIA Privacy Protection Award (2019 and 2021) for his contributions
in the mobile privacy domain. He is also the recipient of the IETF/IRTF Applied
Networking Research Award in 2016 and the Caspar Bowden Award in 2020.
In 2020, he was awarded a Ramon y Cajal Fellowship by the Spanish Ministry
of Science.

https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

