
Lost in Encryption: Monitoring Audio and Video Flows
without Payload in Video-Conferencing Applications

Julien Gamba
Cisco ThousandEyes

Spain

Andre Felipe Zanella∗
Telefónica Innovación Digital

Spain

Ricardo Morla
Cisco ThousandEyes

Portugal

Kyle Schomp
Cisco ThousandEyes

USA

Álvaro Feal
Cisco ThousandEyes

USA

Arash Molavi Kakhki
Cisco ThousandEyes

USA

ABSTRACT
With the increasing popularity of remote work, ensuring a
su!cient level of Quality of Experience (QoE) in video con-
ferencing applications (VCA) has become critical to ensure
that employees can work reliably from anywhere. As such,
monitoring of VCA has received much attention and requires
solving several problems. First, because these applications
typically generate a variety of network "ows, those used for
transporting critical media must be isolated from the rest
of the tra!c. Second, this identi#cation must be performed
at run-time because the VCA often selects the server IP ad-
dresses dynamically. Third, standards and apps are moving
towards more encryption, making it harder to identify media
"ows and extract app-layer metrics.

We present a method for e!cient and near real-time iden-
ti#cation and classi#cation of media "ows from VCA, for
both native and WebRTC-based versions. Our method relies
on insights drawn from tra!c patterns to detect media "ows
accurately in seconds, without prior knowledge of the app’s
internals, relying only on IP/UDP layer metadata, without
depending upon payload or even RTP headers. Then, we
extract application-layer metrics used for QoE estimation
of media "ows by using only IP/UDP packet metadata, and
demonstrate that our heuristic-based estimators perform
well under network degradation for Microsoft Teams.
∗Work done as a PhD intern at Cisco ThousandEyes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro#t or commercial advantage and that
copies bear this notice and the full citation on the #rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci#c
permission and/or a fee. Request permissions from permissions@acm.org.
NGNO ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 979-8-4007-2087-1/25/09. . . $15.00
https://doi.org/10.1145/3748496.3748987

CCS CONCEPTS
• Networks → Network measurement; Network man-
agement;

KEYWORDS
Video Conferencing, Quality of Experience, Access Networks,
Encrypted tra!c

ACM Reference Format:
Julien Gamba, Andre Felipe Zanella, Ricardo Morla, Kyle Schomp,
Álvaro Feal, and Arash Molavi Kakhki. 2025. Lost in Encryption:
Monitoring Audio and Video Flows without Payload in Video-
Conferencing Applications. In 1st Workshop on Next-Generation
Network Observability (NGNO ’25), September 8–11, 2025, Coimbra,
Portugal. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3748496.3748987

1 INTRODUCTION
Remote participation has seen much growth in the last few
years, especially in the work place, where it is common for
many meetings to be held virtually so that some participants
may join remotely. According to a report by OwlLabs, in
2023, 88% of meetings had at least one remote participant.1
This increase in remote collaboration has put QoE video-
conferencing as one of top priorities of enterprises, leading
to signi#cant e$ort in monitoring QoE and adjusting to a
degradation in QoE. In particular, the research community
has long been focusing on the detection, classi#cation and
QoE monitoring of media tra!c generated by video confer-
encing applications [6, 9, 26, 30, 32].

Many of themost frequently used video conferencing tools
(e.g., Microsoft Teams, Cisco Webex, or Zoom) rely upon
the Real-time Transport Protocol (RTP) for delivering media
to the participants in a call [28]. While initially insecure,
the payload is now frequently encrypted using the Secure
Real-time Transport Protocol (SRTP) [5]. However, the head-
ers are still unencrypted, and most of prior work relies on
application-layer information to measure and gain deeper
1https://owllabs.com/state-of-hybrid-work/2023

NGNO ’25, September 8–11, 2025, Coimbra, Portugal J. Gamba et al.

insights about the performance of VCA [4, 19], using #elds
such as payload type (to classify media type), sequence num-
ber (to estimate packet loss), timestamp (to estimate frame
boundaries), among others.
Yet, recent contributions by the IETF sought to encrypt

#elds of the RTP packet left unprotected by SRTP, such as
the header extensions and contributing sources #elds [11].
In this paper, we present methods to preemptively restore
this monitoring gap. We take the approach of assuming that
application-layer information is no longer available in to-
day’s video conferencing applications, and develop solutions
for media "ow detection, classi#cation, and QoE monitor-
ing for today’s most frequently used VCA. Our methods
rely solely upon information available at the network and
transport layers, such as packet sizes and timings, making
our methods robust to future changes and next generation
protocols, as the network and transport layers will always
be available to ensure compatibility with existing network
equipment. We make the following contributions:

• We develop a universal method for media "ow detection
thatworks on any video conferencing application,WebRTC-
based apps included, and relies only on packet timing in-
formation and "ow metadata (i.e., a 5-tuple). Our method
works in near real-time and can be used for monitoring
media "ows as the call takes place, and does not require
any pre-existing dataset to be trained on. We achieve an
average precision of 85% and an average recall of 96% (§3).

• We expand on the state-of-the-art of video conference
QoE estimation relying solely on packet size and timing
information, allowing measuring QoE metrics passively
with network degradation (§4.1).

• We propose new methods for screen share detection (§4.2)
and estimate network degradation (§4.3).

2 OVERVIEW OF VIDEO CONFERENCING
APPLICATIONS

Video conferencing apps allow for real-time communication
between two or more users. With two users, most VCA try to
establish a peer-to-peer connection [1, 10]. In this case, the
app must be able to perform Network Address Translation
(NAT [7, 8]) traversal to establish the connection between the
peers, typically using the STUN [17] or TURN [23] protocols.
This is necessary as most networks, either residential [15]
or ISP networks [25], implement some "avor of NAT to cope
with the shortage of public IPv4 addresses [24], leading to
multiple machines behind the same public IP address. With
more than two users it is necessary to use a media relay
server [31]. The relay performs the task of distributing me-
dia to all participants. Using a media relay can potentially

downgrade the app’s performance, depending upon the loca-
tion of the participants and the relays [14], hence why apps
prefer P2P connections for two-participant calls.
The majority of video conferencing apps rely on RTP

and the RTP Control Protocol (RTCP) to send media traf-
#c [27, 28], although some applications may choose to use
other protocols or to encapsulate RTP into a proprietary
protocol [20]. RTP and RTCP provides a framework that
allow applications to deliver media tra!c in a real-time fash-
ion. These two protocols provide features to app developers
that are not limited to the transport of media tra!c (e.g.,
loss detection and correction, payload type identi#cation,
or membership management). Apps will periodically send
RTCP reports which are then used by other participants of
the call to synchronize the di$erent media "ows together, or
to provide feedback about the quality of the received media.
Among others, it is possible to use RTCP reports to know
how many packets were lost during the call or to compute
the packet jitter along the network path. By default, the ma-
jority of VCA use UDP as their transport protocol, with TCP
as a fallback if UDP is not available (e.g., policy blocked).

It is common for VCA to also o$er web variants that run
in a web browser. These rely on the WebRTC standard for
video calls. WebRTC provides a set of standard APIs2 that
is implemented by the major web browsers. Using WebRTC,
an app can establish a direct connection to another host
and allow audio and video communication. Under the hood,
WebRTC relies on RTP to transport the media tra!c [2, 3, 21].
Although WebRTC allows for other protocols to be used
instead [12], the apps we study in this paper all rely on RTP
for media transport.

3 MEDIA FLOWS DETECTION AND
CLASSIFICATION

In this section, we describe our method to detect media "ows
during calls and classify them by the type of tra!c they trans-
port. Previous work relied mostly on RTP headers to identify
media "ows [22, 26], however, there is nothing preventing
applications from using other protocols. This is the case with
Zoom which uses a custom, proprietary protocol that encap-
sulates RTP [16, 18]. We instead propose a method to detect
media "ows that relies only on the 5-tuple of a "ow and
packet timing information. Our intuition is straightforward:
in real-time video-conferencing applications, video and au-
dio must be encoded and sent as fast as possible, to minimize
delay in communication. This translates into frequent packet
transmissions to avoid bu$ering and delay, negatively im-
pacting the real-time experience. Figure 1 provides experi-
mental results that con#rm this intuition: it shows the size of
packets and the time in which these packets are transmitted
2https://www.w3.org/TR/webrtc/

Lost in Encryption: Monitoring Video-Conferencing Applications NGNO ’25, September 8–11, 2025, Coimbra, Portugal

for two di$erent media "ows captured during a video call
using Microsoft Teams. The orange lines show the timing
of certain user actions which help us manually pinpoint the
type of media transported by each "ow.

We take advantage of this insight to detect media "ows in
video-conferencing apps from the client side, automatically
and at-scale. We monitor the tra!c of a speci#c app and for
each "ow (identi#ed by its 5-tuple) we (1) discretize its tra!c
into windows of 𝐿 seconds; (2) count the number of packets
either sent or received during each window. Each given "ow
with more than 𝑀 packets either sent or received during𝑁
consecutive windows is classi#ed as a media "ow.
We explored the range of possible values for the param-

eters 𝑀 , 𝐿 , and𝑁 to minimize the false positive and false
negative rates, especially in the case of degradation of the
network conditions during a call. Choosing parameters that
are too low lead to a signi#cant increase of false positives,
i.e., non-media "ows "agged as media, such as control tra!c
or long-lived requests. After extensive testing we settled on
windows of 𝐿 = 2 seconds, 𝑀 = 10 packets per window,
and𝑁 = 10 consecutive windows. We #nd that increasing
them more does not help reducing the false positive rate and
automatically increases the detection time for no bene#t.

Our method does not require training of any kind and only
relies on the 5-tuple of a "ow and packet timing informa-
tion, which makes it easy to implement and maintain. Our
method is suitable for deployment at scale, and works in near
real-time: only 20 seconds are needed to identify accurately
all VCA media "ows, which makes it suitable for network
monitoring.
In-lab evaluation: we validated our method in a controlled
environment on popular video-conferencing applications:
Microsoft Teams, Zoom (app only), Cisco Webex, and Google
Meet (WebRTC only). For Teams and Webex we tested both
the app and the WebRTC version. We chose these applica-
tions as they are the most used video conferencing appli-
cations according to various online resources.3 Our setup
consists of a laptop able to capture packets and a router on
which we can arti#cially add loss, delay, and jitter to the
tra!c to simulate bad network conditions. For each app, we
start a call between two computers. One of the computers
is connected to our access point, and we record a PCAP
from that machine on the pktap virtual interface, an Apple-
speci#c interface type that allow us to also capture the PID
of the process that sent or received each packet4, making it
possible to #lter out all packets that belong to other apps.
We test our media "ow detection method under normal

conditions as well as with: (1) synthetic loss (20% of the
packets), delay (500 ms), and jitter (50 ms); (2) UDP blocked,
3https://www.statista.com/statistics/1331323/videoconferencing-market-
share/, https://zapier.com/blog/best-video-conferencing-apps/
4https://www.tcpdump.org/linktypes/LINKTYPE_PKTAP.html

Figure 1: Media tra!c of an MS Teams call (top: audio,
bottom: video). Orange lines represent user actions.

Figure 2: For a 2 participants call, size of received pack-
ets considering: (a) all packets, (b) video, (c) audio, (d)
video re-transmission and (e) screen sharing packets.

otherwise normal network conditions; (3) UDP blocked, with
same synthetic loss, delay, and jitter as in (1). Comparison of
the results of our method with the PCAP #les recorded on the
client con#rms that we can accurately detect all media "ows
with no false positives, regardless of network conditions.

Validation at scale: we collaborated with a large software
company to implement and deploy our method at scale on
customer organizations. The company uses our method to
detect media "ows during Microsoft Teams calls from cus-
tomers’ laptops and monitor the media server used for each
call. For validation, we rely on Microsoft Teams Call Quality
Dashboard (CQD) which contains, among other things, the
IP address of the media relays used during a call5.
Our #nal validation dataset contains data from 124,278

calls from 27,200 Microsoft Teams users from 18 di$erent
customer organizations, taking place between the 24th of
February, 2024 to the 6th of May, 2024. Our method achieves
a true positive rate of 96%. The average precision per call is
85% but the average recall is 96%. We #nd that the average
precision is lowered by IPs that we detect but are not reported
by the CQD. Such IPs could be #le transfers happening in
chat messages during calls, or IPs reported with a masked
last byte by the CQD. Regardless, this shows the e$ectiveness
of our method and its suitability for real-world scenarios.
5https://learn.microsoft.com/en-us/microsoftteams/cqd-what-is-call-
quality-dashboard

NGNO ’25, September 8–11, 2025, Coimbra, Portugal J. Gamba et al.

Classifying "ows media types: recent work by Sharma et
al. [29] showed that the packet size is a reliable indicator
for the type of media. We con#rm this result for the applica-
tions we consider, as illustrated in Figure 2 which shows the
distribution of packet size for a single two-participants call
that lasted three minutes under normal network conditions.
The distributions are for all packets received by one of the
users (we rely on RTP headers to obtain the ground truth of
the media types). Audio and video were transmitted for the
whole call, with screen share on for one minute. All audio
packets are below 250 bytes, while video-related packets are
above 750 bytes. Note that the packet size distribution can
vary depending on the number of participants in the call.
We conducted an experiment with six participants where,
while the packet size in video "ows remains the largest of all
media types, it can sometimes drop below 750 bytes which
was used as a lower bound by Sharma et al. We therefore use
a lower bound of 250 bytes to identify video "ows.

Figure 2 also reveals that screen sharing has a wider range
of packet sizes including below the 250 bytes limit. This
introduces an extra challenge when estimating application
layer metrics of calls, as users sharing screen is an expected
behavior. We will discuss our method for screen sharing
detection in details in section 4.2.

4 PASSIVE ESTIMATION OF VIDEO
METRICS WITHOUT RTP HEADERS

RTP headers and RTCP reports can provide application-layer
metrics for inferring QoE but only if they are unencrypted.
In case of encryption, we can passively estimate such met-
rics without access to RTP headers, relying on the 5-tuple
of a "ow and timing information. In this section we expand
on previous work [29] and present our methods to detect
frame boundaries and frame rate and to estimate video reso-
lution (§4.1), to identify screen sharing (§4.2), and propose
heuristics to detect network degradation (§4.3). We focus on
Microsoft Teams, the most widely used VCA in professional
settings.6 However, our methods are not app-speci#c and
should generalize to other VCA with minimal adjustments
(e.g., parameters tuning). We tested our method using both
UDP and TCP, observing similar results in both cases.

In-lab evaluation:We used two computers joining the same
Microsoft Teams call using a media relay. On the #rst com-
puter, we replaced the camera feed with the FourPeople7
test sequence from the Xiph.org Video Test Media archive,
a 1280 → 720 uncompressed video at 60 fps, looped using
OBS Studio to control the resolution and framerate. The sec-
ond computer joined the call with identical video settings.
693% of Fortune 100 companies report using Microsoft Teams — https:
//www.sci-tech-today.com/stats/microsoft-teams-statistics/
7https://media.xiph.org/video/derf/y4m/FourPeople_1280x720_60.y4m

Figure 3: Parameter adjustment for frame rate estima-
tion under network degradation. (a) left: increasing
𝑀 = 4 to 𝑀 = 20 improves detection with packet loss
and remains e!cient in normal conditions. (b) right:
inter-frame time (IFT) distributions show how byte
tolerance a#ects boundary detection. ω𝐿 = 2 gives 10%
of frames with IFT=0ms, ω𝐿 = 4 yields accurate results.

Figure 4: For 2 participants calls with varying resolu-
tion and frame rate: relationship between (left) packet
arrival rate and resolution, (right) IFT and frame rate.

We captured the packets at both endpoints. All calls were
conducted using Google Chrome and the WebRTC imple-
mentation of Microsoft Teams. We gathered ground-truth
data using the built-in chrome://webrtc-internals tool
which provides us with resolution, framerate, and packet
loss for all incoming and outgoing media "ows.

4.1 Measuring frame rate and resolution

Frame boundary detection: we rely on the passive frame
boundary detection method proposed by Sharma et al. [29].
The authors observed that packets from the same frame
have similar sizes while packets from di$erent frames show
signi#cant variation, which make it possible to detect frame
boundaries by comparing consecutive packets’ sizes with
tolerance for minimal size variation and packet reordering.
We further expand their work by validating their tech-

nique under network degradation and propose new parame-
ters to make it more resilient. For each incoming packet 𝑂 ,
we compare its size 𝐿𝐿 against the previous 𝑀 = 20 packets
(resp. 1–3 packets in Sharma et al.) within a ω𝐿 = 4 bytes

Lost in Encryption: Monitoring Video-Conferencing Applications NGNO ’25, September 8–11, 2025, Coimbra, Portugal

(a) Arrival rate (b) FPS (all) (c) FPS (video) (d) FPS (SS)

Figure 5: For a 720p 2 participant call with screen shar-
ing and time interval delimited by dashed lines: (a) the
arrival rate of packets on the receiver’s side; (b) the
passive estimation of frame rate of the call, showing a
spike related to the new media track; The frame rate
for (c) video and (d) screen sharing tracks, which when
summed explains the spike on the passive estimation.

tolerance (resp. 2 bytes). If 𝐿𝐿 falls within ±ω𝐿 of the pre-
vious packets’ size range, it belongs to the current frame
𝑃𝑀 ; otherwise, it initiates a new frame 𝑃𝑀+1. This parame-
ter combination addresses two issues: (1) packet loss (up to
10%) and out-of-order delivery corrupting boundary detec-
tion with lower tolerance (Figure 3a), and (2) incorrect frame
splits from natural size variations, where ω𝐿 = 2 incorrectly
identi#ed 10% of frames (Figure 3b, indicated by frames with
IFT=0 ms).

Frame rate estimation: we compute the frame rate by
measuring the IFT after identifying frame boundaries and
compare our results with the frame rate reported by Mi-
crosoft Teams. Microsoft Teams constrains frame rates to
1–30 FPS8. Our tests show our adjusted parameters maintain
accurate estimation within this range even with 100ms jitter
and delay, outperforming the baseline from previous work
that overestimates FPS at 5% packet loss.

Video resolution: there is a direct correlation between
packet arrival rates and video resolution as shown in Figure 4.
The resolution can therefore be derived from the following
threshold of the packet arrival rate (in packets per second):
(1) over 250 pkt/s: resolution is 720p; (2) between 200 and
250 pkt/s: 540p; (3) between 110 and 150 pkt/s: 360p; and
(4) below 110 pkt/s: 240p. Our method makes it possible to
monitor the resolution continuously simply by measuring
the packet arrival rate. Network degradation did not a$ect
this estimator, as Microsoft Teams handles this by lowering
the resolution, which our heuristic can keep track of.

4.2 Identifying screen sharing
During two-participant calls, we observe a drop in packet ar-
rival rate when screen sharing begins (Figure 5a), along with
a transient spike in our passive frame rate estimator from
30 to 45 FPS before stabilizing back at 30 FPS (Figure 5b).
This stems from the combination of two distinct streams:
8https://support.microsoft.com/en-us/o!ce/monitor-call-and-meeting-
quality-in-microsoft-teams-7bb1747c-d91a-4fbb-84f6-ad3f48e73511

(a) Packet jitter (b) Frame jitter (c) Packet loss

Figure 6: Real time estimations of (a) packet jitter and
(b) frame jitter; (c) CDF of the inter packet arrival time
for di#erent levels of arti$cial packet loss.

the original video feed maintaining 30 FPS and reducing
resolution (Figure 5c) and the screen share operating at 15
FPS (Figure 5d). We leverage this phenomenon to create a
detection heuristic based on two sequential indicators: the
initial packet arrival rate drop followed by an abnormal FPS
spike. This approach enables reliable screen sharing detec-
tion relying solely on network-layer measurements.

4.3 Passive estimation of degrading
network conditions

We propose passive estimators for three key network degra-
dation metrics: packet jitter, frame jitter, and packet loss.

Packet jitter: calculated using mean deviation of packet
arrival times (i.e., the time between the reception of two
consecutive packets of a "ow). While our results (Figure 6a)
show slightly higher values compared to ground truth, our
method e$ectively tracks network variations, which can
provide insights about worsening conditions in real time.

Frame jitter: calculated using the standard deviation of
inter-frame delay, which is the di$erence between the arrival
time of the #rst packet of each frame. This relies on our
frame boundary detection method. As shown in Figure 6b,
our estimator matches the ground truth.

Packet loss: calculated using the inter-packet arrival time
distributions. Our approach analyzes two distinct intervals
in arrival times: microsecond scale intra-frame bursts and
millisecond scale inter-frame gaps (evident in Figure 6c’s con-
trol curve). Increased loss reduces the proportion of sub-10𝑄𝑅
intervals as retransmissions disrupt packet clustering. We
map speci#c inter-packet time thresholds through quantile
functions to empirical loss levels observed during testing.

5 LIMITATIONS AND FUTUREWORK

Multi-participant estimation: our methods were validated
for two-participants calls. However, additional participants
also increases the amount of packets received, which might
skew our estimators. Figure 7a illustrates this problem: the
receiver needs to know how many users are present to have

NGNO ’25, September 8–11, 2025, Coimbra, Portugal J. Gamba et al.

Figure 7: (a, left) packet arrival rate for a 3 participants
call (b, right) estimation of the number of participants

an accurate estimation of the QoE metrics. Our initial anal-
ysis shows that we could leverage the variance in packet
arrival rate to estimate the number of participants. We create
a quantized time grid and a sampling frequency at least dou-
ble the highest signal frequency present (in order to respect
the Nyquist-Shannon sampling theorem). Here the signal is
the video feed of a individual participant. Video feeds of MS
Teams are limited to 30Hz so we chose a sampling frequency
of 90Hz. We then count the number of packets that arrived
at each slot of the grid across a time period and calculate the
mean and standard deviation of the count of packets over
the slots. Figure 7b shows a direct correlation between these
statistics and the number of participants, which is expected:
more participants means more packets sent from new video
feed and more packets seen at each slot of the quantized grid.
Some combinations of number of participants and frame

rates can be ambiguous if analyzing solely the mean packets
(x-axis of Figure 7b). The standard deviation in the number
of packets over the quantized grid solves this: a higher num-
ber of participants leads to jumps in the standard deviation.
Figure 7b shows that this leads to a separation between mean
and standard deviation across the possible combinations of
number of participants and frame rate. By performing col-
lections at scale, we believe it is possible to map these two
values and create a heuristic to determine the number of par-
ticipants of a VCA call passively. We plan on investigating
this further in the future.

Test on other applications and validation at scale: so far,
our method has been proven to work on multiple applica-
tions, both native orWebRTC-based.We believe our methods
are generic enough to work on any VCA. We intend to test
this assertion on the most popular applications that we have
not already tested. Moreover, as of the time of writing, only
the media "ow detection has been tested at scale. We are
currently in the process of expanding our collaboration to
deploy and test the rest of our methods at scale for all apps
to measure their accuracy in the wild.

6 RELATEDWORK
Tra!c classi#cation has long been the subject of attention
in the research community. either using protocol informa-
tion [13, 20, 26] or machine learning [6, 9]. Perna et al. [22]
present a method to detect and classify media "ows in Real-
Time Communication (RTC) applications using RTP headers
and further rely on the RTP protocol to extract features and
train a machine learning algorithm to classify media "ows.
The adoption of tra!c encryption hinders such methods. In
their paper, Crotti et al. [6] create a classi#er to identify the
protocol of a media "ow using inter-arrival times, size of the
IP packets, and the order in which they are seen by the clas-
si#er. Such features can be used with or without encryption,
but bad network conditions would impact them, which may
in turn lower the accuracy of this method. Erman et al. [9]
use K-Means and DBSCAN to classify tra!c using features
such as the total number of packetsor mean packet inter-
arrival time. However, this require knowing the number of
packets which prevents this method from being used live.
Sharma et al. [29] relies on heuristics to detect and clas-

sify media "ows into video or audio. Their approach relies
on automatic classi#cation of packets transporting video by
relying on their size: packets larger than a size threshold
is marked as video. However, the authors do not consider
the problem of identifying media "ows or additional fea-
tures such as screen sharing or calls with more than two
participants.

7 CONCLUSION
In this paper, we present methods to detect, classify, and
measure the QoE of media "ows in VCA. Our methods only
rely on IP level metadata and can be used with native or
WebRTC-based apps. We demonstrated the e!ciency of our
methods both in lab with various network conditions, but
also at scale by collaborating with a large software company.
This work represent a signi#cant improvement over previ-
ous methods which either relied on app- or protocol-level
information. Future studies could build on our work and
explore new passive estimators for QoE.

REFERENCES
[1] S. Baset A and H. Schulzrinne. 2004. An analysis of the skype peer-to-

peer internet telephony protocol. arXiv preprint cs/0412017 .
[2] H. Alvestrand. 2021. Overview: Real-Time Protocols for Browser-Based

Applications (RFC 8825).
[3] H. Alvestrand. 2021. Transports for WebRTC (RFC 8835).
[4] G. Caro#glio, G. Grassi, E. Loparco, L. Muscariello, M. Papalini, and J.

Samain. 2021. Characterizing the relationship between application QoE
and network QoS for real-time services. In ACM SIGCOMM workshop
on network-application integration.

[5] E. Carrara, K. Norrman, D. McGrew, M. Naslund, and M. Baugher. 2004.
The Secure Real-time Transport Protocol (SRTP) (RFC 3711).

Lost in Encryption: Monitoring Video-Conferencing Applications NGNO ’25, September 8–11, 2025, Coimbra, Portugal

[6] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. 2007. Tra!c classi#-
cation through simple statistical #ngerprinting. SIGCOMM Computer
Communication Review.

[7] K. Egevang and P. Francis. 1994. The IP Network Address Translator
(NAT) (RFC 1631).

[8] K. Egevang and P. Srisuresh. 2001. Traditional IP Network Address
Translator (Traditional NAT) (RFC 3022).

[9] J. Erman, M. Arlitt, and A. Mahanti. 2006. Tra!c classi#cation using
clustering algorithms. In SIGCOMM workshop on Mining network data.

[10] S. Guha and N. Daswani. 2005. An experimental study of the skype
peer-to-peer voip system. Technical Report. Cornell University.

[11] C. Jennings J. Uberti and S. Garcia Murillo. 2023. Completely Encrypt-
ing RTP Header Extensions and Contributing Sources (RFC 9335).

[12] R. Jesup, S. Loreto, and M. Tüxen. 2021. WebRTC Data Channels (RFC
8831).

[13] M. Lyu, S. Madanapalli Chandra, A. Vishwanath, and V. Sivaraman.
2024. Network Anatomy and Real-Time Measurement of Nvidia
GeForce NOW Cloud Gaming. In International Conference on Passive
and Active Network Measurement.

[14] K. MacMillan, T. Mangla, J. Saxon, and N. Feamster. 2021. Measuring
the performance and network utilization of popular video conferencing
applications. In Internet Measurement Conference.

[15] G. Maier, F. Schneider, and A. Feldmann. 2011. NAT usage in residential
broadband networks. In International Conference on Passive and Active
Network Measurement.

[16] B. Marczak and J. Scott-Railton. 2020. Move Fast and Roll Your Own
Crypto: A Quick Look at the Con!dentiality. Technical Report. The
Citizen Lab.

[17] P. Matthews, J. Rosenberg, D. Wing, and R. Mahy. 2008. Session
Traversal Utilities for NAT (STUN) (RFC 5389).

[18] O. Michel, S. Sengupta, H. Kim, R. Netravali, and J. Rexford. 2022.
Enabling passive measurement of zoom performance in production
networks. In ACM Internet Measurement Conference.

[19] A. Nikravesh, D. Hong Ke, Q. Chen Alfred, H. Madhyastha, and Z. Mao
Morley. 2016. QoE inference without application control. In ACM
SIGCOMM Workshop on QoE-based Analysis and Management of Data

Communication Networks.
[20] A. Nisticó, D. Markudova, M. Trevisan, M. Meo, and G. Caro#glio.

2020. A comparative study of RTC applications. In IEEE International
Symposium on Multimedia.

[21] C. Perkins, M. Westerlund, and J. Ott. 2021. Media Transport and Use
of RTP in WebRTC (RFC 8834).

[22] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M. Munafò,
and G. Caro#glio. 2022. Real-time classi#cation of real-time communi-
cations. IEEE Transactions on Network and Service Management.

[23] T. Reddy, A. Johnston, P. Matthews, and J. Rosenberg. 2020. Traver-
sal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN) (RFC 8656).

[24] P. Richter, M. Allman, R. Bush, and V. Paxson. 2015. A primer on IPv4
scarcity. ACM SIGCOMM Computer Communication Review.

[25] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush, A.
Feldmann, C. Kreibich, N. Weaver, and V. Paxson. 2016. A multi-
perspective analysis of carrier-grade NAT deployment. InACM Internet
Measurement Conference.

[26] A. Buyukkayhan S., A. Kavak, and E. Yaprak. 2013. Di$erentiating voice
and data tra!c using statistical properties. In International Conference
on Electronics, Computer and Computation.

[27] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 1996. RTP: A
Transport Protocol for Real-Time Applications (RFC 1889).

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A
Transport Protocol for Real-Time Applications (RFC 3550).

[29] T. Sharma, T. Mangla, A. Gupta, J. Jiang, and N. Feamster. 2023. Estimat-
ing WebRTC Video QoE Metrics Without Using Application Headers.
In Proceedings of the 2023 ACM on Internet Measurement Conference.

[30] A. Moore W and K. Papagiannaki. 2005. Toward the accurate identi#-
cation of network applications. In International workshop on passive
and active network measurement.

[31] C. Yu, Y. Xu, B. Liu, and Y. Liu. 2014. “Can you SEE me now?” A
measurement study of mobile video calls. In IEEE INFOCOM.

[32] M. Zhang, W. John, K. Cla$y, and N. Brownlee. 2009. State of the art
in tra!c classi#cation: A research review. In PAM Student Workshop.

